scholarly journals Food-grade γ-aminobutyric acid production by immobilized glutamate decarboxylase from Lactobacillus plantarum in rice vinegar and monosodium glutamate system

Author(s):  
Li-Li Yao ◽  
Jia-Ren Cao ◽  
Chang-Jiang Lyu ◽  
Fang-Fang Fan ◽  
Hong-Peng Wang ◽  
...  
2021 ◽  
Author(s):  
Li-Li Yao ◽  
Jia-Ren Cao ◽  
Chang-Jiang Lyu ◽  
Fang-Fang Fan ◽  
Hong-Peng Wang ◽  
...  

Abstract Objectives γ-Aminobutyric acid (GABA) is a non-protein amino acid, considered a potent bioactive compound. This study focused on biosynthesis of food-grade GABA by immobilized glutamate decarboxylase (GAD) from Lactobacillus plantarum in the rice vinegar and monosodium glutamate (MSG) reaction system.Results The gene encoding GadB from L. plantarum has been heterologously expressed in Lactococcus lactis and biochemically characterized. Recombinant GadB existed as a homodimer, and displayed maximal activity at 40℃ and pH 5.0. The Km value and catalytic efficiency (kcat/Km) of GadB for L-Glu was 22.33 mM and 1.04 L/(mmol·s), respectively, with a specific activity of 24.97 U/mg protein. Then, purified GadB was encapsulated in gellan gum beads. Compared to the free enzyme, immobilized GadB showed higher operational and storage stability. Finally, 9.82 to 21.48 g/L of GABA have been acquired by regulating the amounts of catalyst microspheres ranging from 0.5 to 0.8 g (wet weight) in 0.8 mL of the designed rice vinegar and MSG reaction system. Conclusions The method of production GABA by immobilized GadB microspheres mixed in the rice vinegar and MSG reaction system is introduced herein for the first time. Especially, the results obtained here meet the increased interest in the harnessing of biocatalyst to synthesize food-grade GABA.


2012 ◽  
Vol 586 ◽  
pp. 85-91
Author(s):  
Ying Guo Lü ◽  
Hui Zhang ◽  
Hui Yuan Yao

An enzymatic method for γ-aminobutyric acid (GABA) production was invested. With this method, rice bran was used as glutamate decarboxylase (GAD) source and exogenous monosodium glutamate(MSG) was used as substrate. We stimulated the rice bran GAD via regulating the temperature, pH, reaction time, buffer and adding PLP, Ca2+ and substrate. In the existence of PLP and Ca2+, the GABA content of rice bran had been improved by about 45 fold. The GABA production reached 2.3g/100g bran, and the Glu conversion reached 100%. As rice bran is a by-product in rice processing and a large quantity of rice bran is commercially available, our study illuminated a safe and efficient way to produce GABA and GABA enriched food.


2021 ◽  
pp. 125423
Author(s):  
Chien-Hui Wu ◽  
Cheng-Di Dong ◽  
Anil Kumar Patel ◽  
Reeta Rani Singhania ◽  
Ming-Jie Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document