scholarly journals Nitrogen enrichment contributes to positive responses to soil microbial communities in three invasive plant species

2016 ◽  
Vol 18 (8) ◽  
pp. 2349-2364 ◽  
Author(s):  
Justin M. Valliere ◽  
Edith B. Allen
2019 ◽  
Vol 136 ◽  
pp. 168-177 ◽  
Author(s):  
Anna M. Stefanowicz ◽  
Małgorzata Stanek ◽  
Marta L. Majewska ◽  
Marcin Nobis ◽  
Szymon Zubek

2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Lucas Dantas Lopes ◽  
Jingjie Hao ◽  
Daniel P Schachtman

ABSTRACT Soil pH is a major factor shaping bulk soil microbial communities. However, it is unclear whether the belowground microbial habitats shaped by plants (e.g. rhizosphere and root endosphere) are also affected by soil pH. We investigated this question by comparing the microbial communities associated with plants growing in neutral and strongly alkaline soils in the Sandhills, which is the largest sand dune complex in the northern hemisphere. Bulk soil, rhizosphere and root endosphere DNA were extracted from multiple plant species and analyzed using 16S rRNA amplicon sequencing. Results showed that rhizosphere, root endosphere and bulk soil microbiomes were different in the contrasting soil pH ranges. The strongest impact of plant species on the belowground microbiomes was in alkaline soils, suggesting a greater selective effect under alkali stress. Evaluation of soil chemical components showed that in addition to soil pH, cation exchange capacity also had a strong impact on shaping bulk soil microbial communities. This study extends our knowledge regarding the importance of pH to microbial ecology showing that root endosphere and rhizosphere microbial communities were also influenced by this soil component, and highlights the important role that plants play particularly in shaping the belowground microbiomes in alkaline soils.


Oecologia ◽  
2017 ◽  
Vol 183 (4) ◽  
pp. 1155-1165 ◽  
Author(s):  
Scott J. Meiners ◽  
Kelsey K. Phipps ◽  
Thomas H. Pendergast ◽  
Thomas Canam ◽  
Walter P. Carson

2020 ◽  
Author(s):  
Meiling Wang ◽  
Xuefei Tang ◽  
Xiaoqiu Sun ◽  
Bingbing Jia ◽  
Hao Xu ◽  
...  

Abstract Background and Aims Plant invasions can change soil microbial communities and affect subsequent invasions directly or indirectly via foliar herbivory. It has been proposed that invaders promote uniform biotic communities that displace diverse, spatially variable communities (the biotic homogenization hypothesis), but this has not been experimentally tested for soil microbial communities, so the underlying mechanisms and dynamics are unclear. Here, we compared density-dependent impacts of the invasive plant Alternanthera philoxeroides and its native congener A. sessilis on soil fungal communities, and their feedback effects on plants and a foliar beetle. Methods We conducted a plant–soil feedback (PSF) experiment and a laboratory bioassay to examine PSFs associated with the native and invasive plants and a beetle feeding on them. We also characterized the soil fungal community using high-throughput sequencing. Key Results We found locally differentiated soil fungal pathogen assemblages associated with high densities of the native plant A. sessilis but little variation in those associated with the invasive congener A. philoxeroides, regardless of plant density. In contrast, arbuscular mycorrhizal fungal assemblages associated with high densities of the invasive plant were more variable. Soil biota decreased plant shoot mass but their effect was weak for the invasive plant growing in native plant-conditioned soils. PSFs increased the larval biomass of a beetle reared on leaves of the native plant only. Moreover, PSFs on plant shoot and root mass and beetle mass were predicted by different pathogen taxa in a plant species-specific manner. Conclusion Our results suggest that plant invasions can rapidly increase the similarity of soil pathogen assemblages even at low plant densities, leading to taxonomically and functionally homogeneous soil communities that may limit negative soil effects on invasive plants.


2021 ◽  
Author(s):  
Teal S Potter ◽  
Amber C Churchill ◽  
William D Bowman ◽  
Brian L Anacker

Purpose: Plants and soil microbes both influence how ecosystems respond to environmental change. Yet, we lack the ability to generalize how plants and soil microbes influence each other in the same or varying soil conditions. This limitation thwarts ecologists' ability to understand and predict effects of environmental changes such and elevated anthropogenic nitrogen (N) deposition. Accordingly, we examined the specificity of plant species' influence on soil microbial community composition. Methods: We tested (1) whether congeneric grass species have unique effects on soil microbial communities, (2) how relative abundances of microbial taxa can be explained by Poa phylogeny, plant traits, and range-wide traits (annual temperature and soil pH), and (3) whether N addition alters associations between Poa species and soil microbes, and (4) whether the magnitude of microbial community change in response to elevated N can be explained by plant growth responses to N. We conducted a greenhouse experiment with seven Poa species and native soils. Results: We found that individual Poa species were associated with different soil fungi but similar soil bacteria. Differences in microbial composition were not attributable to Poa phylogeny, plant traits, or range-wide traits. Nitrogen addition enhanced the unique effects of Poa species on fungal and bacterial community compositions. Conclusion: These results demonstrate how ecological interactions of related plant species vary depending on resource supply, revealing important context dependency for accurately predicting microbially-mediated nutrient cycling and ecosystem responses to changes in nutrient availability.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3472
Author(s):  
Ahmad Azeem ◽  
Mai Wenxuan ◽  
Tian Changyan ◽  
Qaiser Javed ◽  
Adeel Abbas

Nitrogen (N) is the important nutrition that regulatory plant functioning and environmental stability of invasive plant species under flooding (F) conditions. Little information clarifies the role of nitrogen enrichment and flooding on the invasive plant functional traits and competition with native competitors. Plant functional traits play an essential role in the successful growth of plants under different environmental conditions. Therefore, greenhouse pots experiment was conducted with invasive plant species (Wedelia trilobata, WT), and its native competitor (Wedelia chinensis, WC) in monoculture and cocultivation culture, along with flooding and nitrogen enrichment conditions. Considering the impact of flooding (F) and nitrogen (N) on an individual basis, the plant physiological traits of WC were nonsignificant compared to that of WT. However, in the combination of flooding × additional nitrogen (F.N, F.2N), plant physiological traits of WT were comparatively higher than those of WC, especially in cocultivation. In flooding × additional nitrogen (F.N and F.2N), better phenotypic plasticity at different plant traits makes WT more dominant in resource competition over WC. In conclusion, improved functional traits of WT under nitrogen enrichment and flooding conditions enhanced its competitiveness over native competitors.


Sign in / Sign up

Export Citation Format

Share Document