Subordinate plant species impact on soil microbial communities and ecosystem functioning in grasslands: Findings from a removal experiment

2013 ◽  
Vol 15 (2) ◽  
pp. 77-85 ◽  
Author(s):  
Pierre Mariotte ◽  
Charlotte Vandenberghe ◽  
Claire Meugnier ◽  
Pierre Rossi ◽  
Richard D. Bardgett ◽  
...  

2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Lucas Dantas Lopes ◽  
Jingjie Hao ◽  
Daniel P Schachtman

ABSTRACT Soil pH is a major factor shaping bulk soil microbial communities. However, it is unclear whether the belowground microbial habitats shaped by plants (e.g. rhizosphere and root endosphere) are also affected by soil pH. We investigated this question by comparing the microbial communities associated with plants growing in neutral and strongly alkaline soils in the Sandhills, which is the largest sand dune complex in the northern hemisphere. Bulk soil, rhizosphere and root endosphere DNA were extracted from multiple plant species and analyzed using 16S rRNA amplicon sequencing. Results showed that rhizosphere, root endosphere and bulk soil microbiomes were different in the contrasting soil pH ranges. The strongest impact of plant species on the belowground microbiomes was in alkaline soils, suggesting a greater selective effect under alkali stress. Evaluation of soil chemical components showed that in addition to soil pH, cation exchange capacity also had a strong impact on shaping bulk soil microbial communities. This study extends our knowledge regarding the importance of pH to microbial ecology showing that root endosphere and rhizosphere microbial communities were also influenced by this soil component, and highlights the important role that plants play particularly in shaping the belowground microbiomes in alkaline soils.



Oecologia ◽  
2017 ◽  
Vol 183 (4) ◽  
pp. 1155-1165 ◽  
Author(s):  
Scott J. Meiners ◽  
Kelsey K. Phipps ◽  
Thomas H. Pendergast ◽  
Thomas Canam ◽  
Walter P. Carson


2019 ◽  
Vol 26 (2) ◽  
pp. 431-442 ◽  
Author(s):  
Sihang Yang ◽  
Qiaoshu Zheng ◽  
Yunfeng Yang ◽  
Mengting Yuan ◽  
Xingyu Ma ◽  
...  


mBio ◽  
2011 ◽  
Vol 2 (4) ◽  
Author(s):  
Jizhong Zhou ◽  
Ye Deng ◽  
Feng Luo ◽  
Zhili He ◽  
Yunfeng Yang

ABSTRACT Understanding the interactions among different species and their responses to environmental changes, such as elevated atmospheric concentrations of CO2, is a central goal in ecology but is poorly understood in microbial ecology. Here we describe a novel random matrix theory (RMT)-based conceptual framework to discern phylogenetic molecular ecological networks using metagenomic sequencing data of 16S rRNA genes from grassland soil microbial communities, which were sampled from a long-term free-air CO2 enrichment experimental facility at the Cedar Creek Ecosystem Science Reserve in Minnesota. Our experimental results demonstrated that an RMT-based network approach is very useful in delineating phylogenetic molecular ecological networks of microbial communities based on high-throughput metagenomic sequencing data. The structure of the identified networks under ambient and elevated CO2 levels was substantially different in terms of overall network topology, network composition, node overlap, module preservation, module-based higher-order organization, topological roles of individual nodes, and network hubs, suggesting that the network interactions among different phylogenetic groups/populations were markedly changed. Also, the changes in network structure were significantly correlated with soil carbon and nitrogen contents, indicating the potential importance of network interactions in ecosystem functioning. In addition, based on network topology, microbial populations potentially most important to community structure and ecosystem functioning can be discerned. The novel approach described in this study is important not only for research on biodiversity, microbial ecology, and systems microbiology but also for microbial community studies in human health, global change, and environmental management. IMPORTANCE The interactions among different microbial populations in a community play critical roles in determining ecosystem functioning, but very little is known about the network interactions in a microbial community, owing to the lack of appropriate experimental data and computational analytic tools. High-throughput metagenomic technologies can rapidly produce a massive amount of data, but one of the greatest difficulties is deciding how to extract, analyze, synthesize, and transform such a vast amount of information into biological knowledge. This study provides a novel conceptual framework to identify microbial interactions and key populations based on high-throughput metagenomic sequencing data. This study is among the first to document that the network interactions among different phylogenetic populations in soil microbial communities were substantially changed by a global change such as an elevated CO2 level. The framework developed will allow microbiologists to address research questions which could not be approached previously, and hence, it could represent a new direction in microbial ecology research.



2020 ◽  
Author(s):  
Cameron Wagg ◽  
Yann Hautier ◽  
Sarah Pellkofer ◽  
Samiran Banerjee ◽  
Bernhard Schmid ◽  
...  

AbstractTheoretical and empirical advances have revealed the importance of biodiversity for stabilizing ecosystem functions through time. Yet despite the global degradation of soils, how the loss of soil microbial diversity can de-stabilizes ecosystem functioning is unknown. Here we experimentally quantified the contribution diversity and the temporal dynamics in the composition of soil microbial communities to the temporal stability of four key ecosystem functions related to nutrient and carbon cycling. Soil microbial diversity loss reduced the temporal stability of all ecosystem functions and was particularly strong when over 50% of microbial taxa were lost. The stabilizing effect of soil biodiversity was linked to asynchrony among microbial taxa whereby different soil fungi and bacteria were associated with different ecosystem functions at different times. Our results emphasize the need to conserve soil biodiversity in order to ensure the reliable provisioning of multiple ecosystems functions that soils provide to society.



2019 ◽  
Vol 136 ◽  
pp. 168-177 ◽  
Author(s):  
Anna M. Stefanowicz ◽  
Małgorzata Stanek ◽  
Marta L. Majewska ◽  
Marcin Nobis ◽  
Szymon Zubek




2021 ◽  
Author(s):  
Teal S Potter ◽  
Amber C Churchill ◽  
William D Bowman ◽  
Brian L Anacker

Purpose: Plants and soil microbes both influence how ecosystems respond to environmental change. Yet, we lack the ability to generalize how plants and soil microbes influence each other in the same or varying soil conditions. This limitation thwarts ecologists' ability to understand and predict effects of environmental changes such and elevated anthropogenic nitrogen (N) deposition. Accordingly, we examined the specificity of plant species' influence on soil microbial community composition. Methods: We tested (1) whether congeneric grass species have unique effects on soil microbial communities, (2) how relative abundances of microbial taxa can be explained by Poa phylogeny, plant traits, and range-wide traits (annual temperature and soil pH), and (3) whether N addition alters associations between Poa species and soil microbes, and (4) whether the magnitude of microbial community change in response to elevated N can be explained by plant growth responses to N. We conducted a greenhouse experiment with seven Poa species and native soils. Results: We found that individual Poa species were associated with different soil fungi but similar soil bacteria. Differences in microbial composition were not attributable to Poa phylogeny, plant traits, or range-wide traits. Nitrogen addition enhanced the unique effects of Poa species on fungal and bacterial community compositions. Conclusion: These results demonstrate how ecological interactions of related plant species vary depending on resource supply, revealing important context dependency for accurately predicting microbially-mediated nutrient cycling and ecosystem responses to changes in nutrient availability.



2021 ◽  
Author(s):  
Seraina Lisa Cappelli ◽  
Luiz Domeignoz Horta ◽  
Viviana Loaiza ◽  
Anna-Liisa Laine

While the positive relationship between plant biodiversity and ecosystem functioning (BEF) is relatively well-established, far less in known about the extent to which this relationship is mediated via below-ground microbial responses to plant diversity. Limited evidence suggests that the diversity of soil microbial communities is sensitive to plant community structure, and that diverse soil microbial communities promote functions desired of sustainable food production systems such as enhanced carbon sequestration and nutrient cycling. Here, we discuss available evidence on how plant diversity could be utilized to purposefully guide soil biodiversity in agricultural systems that are typically depleted of biodiversity, and are notoriously sensitive to both biotic and abiotic stressors. We outline the direct and soil microbe-mediated mechanisms expected to promote a positive BEF relationship both above- and below-ground. Finally, we identify management schemes based on ecological theory and vast empirical support that can be utilized to maximize ecosystem functioning in agroecosystems via biodiversity implementation schemes.



Sign in / Sign up

Export Citation Format

Share Document