Backward perturbation analysis and residual-based error bounds for the linear response eigenvalue problem

2014 ◽  
Vol 55 (3) ◽  
pp. 869-896 ◽  
Author(s):  
Lei-Hong Zhang ◽  
Wen-Wei Lin ◽  
Ren-Cang Li
2019 ◽  
Vol 17 (1) ◽  
pp. 653-667
Author(s):  
Zhongming Teng ◽  
Hong-Xiu Zhong

Abstract In the linear response eigenvalue problem arising from computational quantum chemistry and physics, one needs to compute a few of smallest positive eigenvalues together with the corresponding eigenvectors. For such a task, most of efficient algorithms are based on an important notion that is the so-called pair of deflating subspaces. If a pair of deflating subspaces is at hand, the computed approximated eigenvalues are partial eigenvalues of the linear response eigenvalue problem. In the case the pair of deflating subspaces is not available, only approximate one, in a recent paper [SIAM J. Matrix Anal. Appl., 35(2), pp.765-782, 2014], Zhang, Xue and Li obtained the relationships between the accuracy in eigenvalue approximations and the distances from the exact deflating subspaces to their approximate ones. In this paper, we establish majorization type results for these relationships. From our majorization results, various bounds are readily available to estimate how accurate the approximate eigenvalues based on information on the approximate accuracy of a pair of approximate deflating subspaces. These results will provide theoretical foundations for assessing the relative performance of certain iterative methods in the linear response eigenvalue problem.


Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 53 ◽  
Author(s):  
Hongxiu Zhong ◽  
Zhongming Teng ◽  
Guoliang Chen

In order to solve all or some eigenvalues lied in a cluster, we propose a weighted block Golub-Kahan-Lanczos algorithm for the linear response eigenvalue problem. Error bounds of the approximations to an eigenvalue cluster, as well as their corresponding eigenspace, are established and show the advantages. A practical thick-restart strategy is applied to the block algorithm to eliminate the increasing computational and memory costs, and the numerical instability. Numerical examples illustrate the effectiveness of our new algorithms.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yadan Chen ◽  
Yuan Shen ◽  
Shanshan Liu

<p style='text-indent:20px;'>In various applications, such as the computation of energy excitation states of electrons and molecules, and the analysis of interstellar clouds, the linear response eigenvalue problem, which is a special type of the Hamiltonian eigenvalue problem, is frequently encountered. However, traditional eigensolvers may not be applicable to this problem owing to its inherently large scale. In fact, we are usually more interested in computing some of the smallest positive eigenvalues. To this end, a trace minimum principle optimization model with orthogonality constraint has been proposed. On this basis, we propose an unconstrained surrogate model called trace minimization via penalty, and we establish its equivalence with the original constrained model, provided that the penalty parameter is larger than a certain threshold. By avoiding the orthogonality constraint, we can use a gradient-type method to solve this model. Specifically, we use the gradient descent method with Barzilai–Borwein step size. Moreover, we develop a restarting strategy for the proposed algorithm whereby higher accuracy and faster convergence can be achieved. This is verified by preliminary experimental results.</p>


1997 ◽  
Vol 119 (3) ◽  
pp. 647-650 ◽  
Author(s):  
M.-T. Yang ◽  
J. H. Griffin

Modal interaction refers to the way that the modes of a structure interact when its geometry and material properties are perturbed. The amount of interaction between the neighboring modes depends on the closeness of the natural frequencies, the mode shapes, and the magnitude and distribution of the perturbation. By formulating the structural eigenvalue problem as a normalized modal eigenvalue problem, it is shown that the amount of interaction in two modes can be simply characterized by six normalized modal parameters and the difference between the normalized frequencies. In this paper, the statistical behaviors of the normalized frequencies and modes are investigated based on a perturbation analysis. The results are independently verified by Monte Carlo simulations.


Sign in / Sign up

Export Citation Format

Share Document