scholarly journals Entropy stable numerical approximations for the isothermal and polytropic Euler equations

2019 ◽  
Vol 60 (3) ◽  
pp. 791-824
Author(s):  
Andrew R. Winters ◽  
Christof Czernik ◽  
Moritz B. Schily ◽  
Gregor J. Gassner

AbstractIn this work we analyze the entropic properties of the Euler equations when the system is closed with the assumption of a polytropic gas. In this case, the pressure solely depends upon the density of the fluid and the energy equation is not necessary anymore as the mass conservation and momentum conservation then form a closed system. Further, the total energy acts as a convex mathematical entropy function for the polytropic Euler equations. The polytropic equation of state gives the pressure as a scaled power law of the density in terms of the adiabatic index $$\gamma $$ γ . As such, there are important limiting cases contained within the polytropic model like the isothermal Euler equations ($$\gamma {=}1$$ γ = 1 ) and the shallow water equations ($$\gamma {=}2$$ γ = 2 ). We first mimic the continuous entropy analysis on the discrete level in a finite volume context to get special numerical flux functions. Next, these numerical fluxes are incorporated into a particular discontinuous Galerkin (DG) spectral element framework where derivatives are approximated with summation-by-parts operators. This guarantees a high-order accurate DG numerical approximation to the polytropic Euler equations that is also consistent to its auxiliary total energy behavior. Numerical examples are provided to verify the theoretical derivations, i.e., the entropic properties of the high order DG scheme.

2021 ◽  
Vol 426 ◽  
pp. 109935 ◽  
Author(s):  
Sebastian Hennemann ◽  
Andrés M. Rueda-Ramírez ◽  
Florian J. Hindenlang ◽  
Gregor J. Gassner

Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter defines the conserved quantities associated with an isolated dynamical system, that is, the quantities which remain constant during the motion of the system. The law of momentum conservation follows directly from Newton’s third law. The superposition principle for forces allows Newton’s law of motion for a body Pa acted on by other bodies Pa′ in an inertial Cartesian frame S. The law of angular momentum conservation holds if the forces acting on the elements of the system depend only on the separation of the elements. Finally, the conservation of total energy requires in addition that the forces be derivable from a potential.


1988 ◽  
Vol 3 (3) ◽  
pp. 275-288 ◽  
Author(s):  
Saul Abarbanel ◽  
Ajay Kumar

Sign in / Sign up

Export Citation Format

Share Document