scholarly journals Study of near-surface models for large-eddy simulations of a neutrally stratified atmospheric boundary layer

2007 ◽  
Vol 124 (3) ◽  
pp. 405-424 ◽  
Author(s):  
Inanc Senocak ◽  
Andrew S. Ackerman ◽  
Michael P. Kirkpatrick ◽  
David E. Stevens ◽  
Nagi N. Mansour
Author(s):  
Aaron Wang ◽  
Ying Pan ◽  
Paul M. Markowski

AbstractThis work explores the influence of Weighted Essentially Non-Oscillatory (WENO) schemes on Cloud Model 1 (CM1) large-eddy simulations (LES) of a quasi-steady, horizontally homogeneous, fully developed, neutral atmospheric boundary layer (ABL). An advantage of applying WENO schemes to scalar advection in compressible models is the elimination of acoustic waves and associated oscillations of domain-total vertical velocity. Applying WENO schemes to momentum advection in addition to scalar advection yields no further advantage, but has an adverse effect on resolved turbulence within LES. As a tool designed to reduce numerically generated spurious oscillations, WENO schemes also suppress physically realistic instability development in turbulence-resolving simulations. Thus, applying WENO schemes to momentum advection reduces vortex stretching, suppresses the energy cascade, reduces shear-production of resolved Reynolds stress, and eventually amplifies the differences between the surface-layer mean wind profiles in the LES and the mean wind profiles expected in accordance with the filtered law of the wall (LOTW). The role of WENO schemes in adversely influencing surface-layer turbulence has inspired a concept of anti-WENO (AWENO) schemes to enhance instability development in regions where energy-containing turbulent motions are inadequately resolved by LES grids. The success in reproducing the filtered LOTW via AWENO schemes suggests that improving advection schemes is a critical component toward faithfully simulating near-surface turbulence and dealing with other "Terra Incognita" problems.


2013 ◽  
Vol 141 (3) ◽  
pp. 918-940 ◽  
Author(s):  
Jeff Mirocha ◽  
Gokhan Kirkil ◽  
Elie Bou-Zeid ◽  
Fotini Katopodes Chow ◽  
Branko Kosović

Abstract The Weather Research and Forecasting Model permits finescale large-eddy simulations (LES) to be nested within coarser simulations, an approach that can generate more accurate turbulence statistics and improve other aspects of simulated flows. However, errors are introduced into the finer domain from the nesting methodology. Comparing nested domain, flat-terrain simulations of the neutral atmospheric boundary layer with single-domain simulations using the same mesh, but instead using periodic lateral boundary conditions, reveals the errors contributed to the nested solution from the parent domain and nest interfaces. Comparison of velocity spectra shows good agreement among higher frequencies, but greater power predicted on the nested domain at lower frequencies. Profiles of mean wind speed show significant near-surface deficits near the inflow boundaries, but equilibrate to improved values with distance. Profiles of the vertical flux of x momentum show significant underprediction by the nested domain close to the surface and near the inlet boundaries. While these underpredictions of the stresses, which cause the near-surface velocity deficits, attenuate with distance within the nested domains, significant errors remain throughout. Profiles of the resolved turbulence kinetic energy show considerable deviations from their single-domain values throughout the nested domains. The authors examine the accuracy of these parameters and their sensitivities to the turbulence subfilter stress model, mesh resolution, and grid aspect ratio, and provide guidance to practitioners of nested LES.


Wind Energy ◽  
2013 ◽  
Vol 17 (4) ◽  
pp. 657-669 ◽  
Author(s):  
Niels Troldborg ◽  
Jens N. Sørensen ◽  
Robert Mikkelsen ◽  
Niels N. Sørensen

Sign in / Sign up

Export Citation Format

Share Document