scholarly journals Correction to: Dual-energy CT angiography in suspected pulmonary embolism: infuence of injection protocols on image quality and perfused blood volume

Author(s):  
Aleksander Kosmala ◽  
Philipp Gruschwitz ◽  
Simon Veldhoen ◽  
Andreas Max Weng ◽  
Bernhard Krauss ◽  
...  
2020 ◽  
Vol 36 (10) ◽  
pp. 2051-2059
Author(s):  
Aleksander Kosmala ◽  
Philipp Gruschwitz ◽  
Simon Veldhoen ◽  
Andreas Max Weng ◽  
Bernhard Krauss ◽  
...  

Author(s):  
Bernhard Petritsch ◽  
Pauline Pannenbecker ◽  
Andreas Max Weng ◽  
Simon Veldhoen ◽  
Jan-Peter Grunz ◽  
...  

Purpose Comparison of dual-source dual-energy CT (DS-DECT) and split-filter dual-energy CT (SF-DECT) regarding image quality and radiation dose in patients with suspected pulmonary embolism. Materials and Methods We retrospectively analyzed pulmonary dual-energy CT angiography (CTPA) scans performed on two different CT scanners in 135 patients with suspected pulmonary embolism (PE). Scan parameters for DS-DECT were 90/Sn150 kV (n = 68 patients), and Au/Sn120 kV for SF-DECT (n = 67 patients). The iodine delivery rate was 1400 mg/s in the DS-DECT group vs. 1750 mg/s in the SF-DECT group. Color-coded iodine distribution maps were generated for both protocols. Objective (CT attenuation of pulmonary trunk [HU], signal-to-noise ratio [SNR], contrast-to-noise ratio [CNR]) and subjective image quality parameters (two readers [R], five-point Likert scale), as well as radiation dose parameters (effective radiation dose, size-specific dose estimations [SSDE]) were compared. Results All CTPA scans in both groups were of diagnostic image quality. Subjective CTPA image quality was rated as good or excellent in 80.9 %/82.4 % (R1 / R2) of DS-DECT scans, and in 77.6 %/76.1 % of SF-DECT scans. For both readers, the image quality of split-filter iodine distribution maps was significantly lower (p < 0.05) with good or excellent ratings in only 43.3 %/46.3 % (R1 / R2) vs. 83.8 %/88.2 % for maps from DS-DECT. The HU values of the pulmonary trunk did not differ between the two techniques (p = n. s.), while both the SNR and CNR were significantly higher in the split-filter group (p < 0.001; p = 0.003). Both effective radiation dose (2.70 ± 1.32 mSv vs. 2.89 ± 0.94 mSv) and SSDE (4.71 ± 1.63 mGy vs. 5.84 ± 1.11 mGy) were significantly higher in the split-filter group (p < 0.05). Conclusion The split-filter allows for dual-energy imaging of suspected pulmonary embolism but is associated with lower iodine distribution map quality and higher radiation dose. Key points:  Citation Format


2013 ◽  
Vol 20 (8) ◽  
pp. 962-971 ◽  
Author(s):  
Jan Hansmann ◽  
Christian Fink ◽  
Gregor Jost ◽  
Hubertus Pietsch ◽  
Mathias Meyer ◽  
...  

2019 ◽  
Vol 212 (6) ◽  
pp. 1253-1259 ◽  
Author(s):  
Dagmar Grob ◽  
Ewoud Smit ◽  
Luuk J. Oostveen ◽  
Miranda M. Snoeren ◽  
Mathias Prokop ◽  
...  

2020 ◽  
Vol 17 (2) ◽  
Author(s):  
Selen Bayraktaroglu ◽  
Akın Cinkooglu ◽  
Naim Ceylan ◽  
Recep Savas

Background: Multidetector computed tomography (MDCT) angiography is considered as the gold standard imaging modality in the evaluation of acute pulmonary embolism. Optimum vascular enhancement is critical for MDCT studies. The suboptimal opacification in pulmonary artery could be salvaged using low-energy virtual monoenergetic images (VMI) at rapid kVp switch dual energy CT. Objectives: To explore the potential improvement in pulmonary artery opacification and to assess the change in image quality parameters in VMI using fast switch kVp dual energy CT. Patients and Methods: The CT images of 877 patients who were referred with a preliminary diagnosis of pulmonary embolism were reviewed. Sixty patients with suboptimal enhancement (< 200 Hounsfeld Unit [HU]) were involved. Standard images (140 kVp) and VMI from 40 to 120 keV were generated. Attenuation, noise, signal to noise ratio (SNR) and contrast to noise ratio (CNR) were measured in the pulmonary artery. Using VMIs, the best image was determined as the image with the main pulmonary artery opacification greater than 200 HU and image quality ≥ 3. Fifty six studies that met these criteria were considered as salvaged. At this best energy level, quantitative parameters were compared with standard images. Results: The mean attenuation of pulmonary arteries was 169.80 HU in standard images in patients with suboptimal enhancement. The attenuations of VMIs at 40, 45, 50, 55, 60, 65, and 70 keV were significantly higher than standard images (P < 0.001). Similar findings were observed with SNR and CNR. In the salvaged patients, the average increase in mean pulmonary artery attenuation was 62% (from 172.61 ± 23.4 to 280.55 ± 40.7), the average increase in SNR was 38% (from 12.1 ± 5.3 to 16.7 ± 7.1) and the average increase in CNR was 48% (9.2 ± 4.3 to 13.7 ± 6) (P < 0.001). Conclusions: Low keV VMI reconstructions significantly increase pulmonary artery attenuation, CNR and SNR compared to standard image reconstructions. Suboptimal CT studies could be salvaged using low keV VMIs.


2010 ◽  
Vol 21 (3) ◽  
pp. 315-321 ◽  
Author(s):  
Wieland H. Sommer ◽  
Anno Graser ◽  
Christoph R. Becker ◽  
Dirk A. Clevert ◽  
Maximilian F. Reiser ◽  
...  

2012 ◽  
Vol 199 (5) ◽  
pp. W646-W650 ◽  
Author(s):  
Boris Schulz ◽  
Katharina Kuehling ◽  
Wolfgang Kromen ◽  
Petra Siebenhandl ◽  
Matthias Josef Kerl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document