Limit theorem for multichannel networks in heavy traffic

2012 ◽  
Vol 48 (6) ◽  
pp. 899-905 ◽  
Author(s):  
A. V. Livinskaya ◽  
E. A. Lebedev
1978 ◽  
Vol 10 (04) ◽  
pp. 852-866
Author(s):  
A. J. Stam

Let be a family of random walks with For ε↓0 under certain conditions the random walk U (∊) n converges to an oscillating random walk. The ladder point distributions and expectations converge correspondingly. Let M ∊ = max {U (∊) n , n ≧ 0}, v 0 = min {n : U (∊) n = M ∊}, v 1 = max {n : U (∊) n = M ∊}. The joint limiting distribution of ∊2σ∊ –2 v 0 and ∊σ∊ –2 M ∊ is determined. It is the same as for ∊2σ∊ –2 v 1 and ∊σ–2 ∊ M ∊. The marginal ∊σ–2 ∊ M ∊ gives Kingman's heavy traffic theorem. Also lim ∊–1 P(M ∊ = 0) and lim ∊–1 P(M ∊ < x) are determined. Proofs are by direct comparison of corresponding probabilities for U (∊) n and for a special family of random walks related to MI/M/1 queues, using the central limit theorem.


1983 ◽  
Vol 15 (02) ◽  
pp. 420-443 ◽  
Author(s):  
Julian Keilson ◽  
Ushio Sumita

Waiting-time distributions for M/G/1 systems with priority dependent on class, order of arrival, service length, etc., are difficult to obtain. For single-server multipurpose processors the difficulties are compounded. A certain ergodic post-arrival depletion time is shown to be a true maximum for all delay times of interest. Explicit numerical evaluation of the distribution of this time is available. A heavy-traffic distribution for this time is shown to provide a simple and useful engineering tool with good results and insensitivity to service-time distribution even at modest traffic intensity levels. The relationship to the diffusion approximation for heavy traffic is described.


1973 ◽  
Vol 10 (04) ◽  
pp. 907-912 ◽  
Author(s):  
J. Michael Harrison

A single server, two priority queueing system is studied under the heavy traffic condition where the system traffic intensity is either at or near its critical value. An approximation is developed for the transient distribution of the low priority customers' virtual waiting time process. This result is stated formally as a limit theorem involving a sequence of systems whose traffic intensities approach the critical value.


1973 ◽  
Vol 10 (4) ◽  
pp. 907-912 ◽  
Author(s):  
J. Michael Harrison

A single server, two priority queueing system is studied under the heavy traffic condition where the system traffic intensity is either at or near its critical value. An approximation is developed for the transient distribution of the low priority customers' virtual waiting time process. This result is stated formally as a limit theorem involving a sequence of systems whose traffic intensities approach the critical value.


1988 ◽  
Vol 25 (03) ◽  
pp. 596-611
Author(s):  
Xing Jin

This paper provides Berry–Esseen rate of limit theorem concerning the number of customers in a GI/G/K queueing system observed at arrival epochs for traffic intensity ρ > 1. The main method employed involves establishing several equalities about waiting time and queue length.


1982 ◽  
Vol 14 (01) ◽  
pp. 171-190 ◽  
Author(s):  
Ward Whitt

A revealing alternate proof is provided for the Iglehart (1965), (1973)–Borovkov (1967) heavy-traffic limit theorem for GI/G/s queues. This kind of heavy traffic is obtained by considering a sequence of GI/G/s systems with the numbers of servers and the arrival rates going to ∞ while the service-time distributions are held fixed. The theorem establishes convergence to a Gaussian process, which in general is not Markov, for an appropriate normalization of the sequence of stochastic processes representing the number of customers in service at arbitrary times. The key idea in the new proof is to consider service-time distributions that are randomly stopped sums of exponential phases, and then work with the discrete-time vector-valued Markov chain representing the number of customers in each phase of service at arrival epochs. It is then easy to show that this sequence of Markov chains converges to a multivariate O–U (Ornstein–Uhlenbeck) diffusion process by applying simple criteria in Stroock and Varadhan (1979). The Iglehart–Borovkov limit for these special service-time distributions is the sum of the components of this multivariate O–U process. Heavy-traffic convergence is also established for the steady-state distributions of GI/M/s queues under the same conditions by exploiting stochastic-order properties.


1988 ◽  
Vol 25 (3) ◽  
pp. 596-611 ◽  
Author(s):  
Xing Jin

This paper provides Berry–Esseen rate of limit theorem concerning the number of customers in a GI/G/K queueing system observed at arrival epochs for traffic intensity ρ > 1. The main method employed involves establishing several equalities about waiting time and queue length.


1978 ◽  
Vol 10 (4) ◽  
pp. 852-866
Author(s):  
A. J. Stam

Let be a family of random walks with For ε↓0 under certain conditions the random walk U(∊)n converges to an oscillating random walk. The ladder point distributions and expectations converge correspondingly. Let M∊ = max {U(∊)n, n ≧ 0}, v0 = min {n : U(∊)n = M∊}, v1 = max {n : U(∊)n = M∊}. The joint limiting distribution of ∊2σ∊–2v0 and ∊σ∊–2M∊ is determined. It is the same as for ∊2σ∊–2v1 and ∊σ–2∊M∊. The marginal ∊σ–2∊M∊ gives Kingman's heavy traffic theorem. Also lim ∊–1P(M∊ = 0) and lim ∊–1P(M∊ < x) are determined. Proofs are by direct comparison of corresponding probabilities for U(∊)n and for a special family of random walks related to MI/M/1 queues, using the central limit theorem.


Sign in / Sign up

Export Citation Format

Share Document