A limit theorem for priority queues in heavy traffic

1973 ◽  
Vol 10 (04) ◽  
pp. 907-912 ◽  
Author(s):  
J. Michael Harrison

A single server, two priority queueing system is studied under the heavy traffic condition where the system traffic intensity is either at or near its critical value. An approximation is developed for the transient distribution of the low priority customers' virtual waiting time process. This result is stated formally as a limit theorem involving a sequence of systems whose traffic intensities approach the critical value.

1973 ◽  
Vol 10 (4) ◽  
pp. 907-912 ◽  
Author(s):  
J. Michael Harrison

A single server, two priority queueing system is studied under the heavy traffic condition where the system traffic intensity is either at or near its critical value. An approximation is developed for the transient distribution of the low priority customers' virtual waiting time process. This result is stated formally as a limit theorem involving a sequence of systems whose traffic intensities approach the critical value.


1989 ◽  
Vol 21 (02) ◽  
pp. 485-487 ◽  
Author(s):  
G. I. Falin

An analytic approach to the diffusion approximation in queueing due to Burman (1979) is applied to the M(t)/G/1/∞ queueing system with periodic Poisson arrivals. We show that under heavy traffic the virtual waiting time process can be approximated by a certain Wiener process with reflecting barrier at 0.


1989 ◽  
Vol 21 (2) ◽  
pp. 485-487 ◽  
Author(s):  
G. I. Falin

An analytic approach to the diffusion approximation in queueing due to Burman (1979) is applied to the M(t)/G/1/∞ queueing system with periodic Poisson arrivals. We show that under heavy traffic the virtual waiting time process can be approximated by a certain Wiener process with reflecting barrier at 0.


1971 ◽  
Vol 8 (3) ◽  
pp. 494-507 ◽  
Author(s):  
E. K. Kyprianou

We consider a single server queueing system M/G/1 in which customers arrive in a Poisson process with mean λt, and the service time has distribution dB(t), 0 < t < ∞. Let W(t) be the virtual waiting time process, i.e., the time that a potential customer arriving at the queueing system at time t would have to wait before beginning his service. We also let the random variable denote the first busy period initiated by a waiting time u at time t = 0.


1971 ◽  
Vol 8 (03) ◽  
pp. 494-507 ◽  
Author(s):  
E. K. Kyprianou

We consider a single server queueing system M/G/1 in which customers arrive in a Poisson process with mean λt, and the service time has distribution dB(t), 0 &lt; t &lt; ∞. Let W(t) be the virtual waiting time process, i.e., the time that a potential customer arriving at the queueing system at time t would have to wait before beginning his service. We also let the random variable denote the first busy period initiated by a waiting time u at time t = 0.


1984 ◽  
Vol 21 (1) ◽  
pp. 129-142 ◽  
Author(s):  
Teunis J. Ott

A single-server queueing system is studied, the input into which consists of the sum of two independent stochastic processes. One of these is an ‘M/G' type input process, the other a much more general process which need not be Markov. There are two types of busy period, depending on which arrival process started the busy period. Stochastic monotonicity results are derived and it is found that under a stationarity-like condition the probability of being in a busy period which started with an ‘M/G' arrival is independent of time and is the same it would be with the ‘M/G' process as only input process. Also, distributional results are obtained for the virtual waiting-time process, and these results are used to reduce the study of a single-server queueing system with as input the sum of independent ‘M/G' and ‘GI/G' input streams to the study of a related GI/G/1 queueing system.The purpose of this paper is to pave the way for a study of an M/G/1 queueing system with periodic arrivals of additional work, and for optimal scheduling of maintenance processes in certain real-time computer systems.


1984 ◽  
Vol 21 (01) ◽  
pp. 129-142
Author(s):  
Teunis J. Ott

A single-server queueing system is studied, the input into which consists of the sum of two independent stochastic processes. One of these is an ‘M/G' type input process, the other a much more general process which need not be Markov. There are two types of busy period, depending on which arrival process started the busy period. Stochastic monotonicity results are derived and it is found that under a stationarity-like condition the probability of being in a busy period which started with an ‘M/G' arrival is independent of time and is the same it would be with the ‘M/G' process as only input process. Also, distributional results are obtained for the virtual waiting-time process, and these results are used to reduce the study of a single-server queueing system with as input the sum of independent ‘M/G' and ‘GI/G' input streams to the study of a related GI/G/1 queueing system. The purpose of this paper is to pave the way for a study of an M/G/1 queueing system with periodic arrivals of additional work, and for optimal scheduling of maintenance processes in certain real-time computer systems.


1983 ◽  
Vol 15 (02) ◽  
pp. 420-443 ◽  
Author(s):  
Julian Keilson ◽  
Ushio Sumita

Waiting-time distributions for M/G/1 systems with priority dependent on class, order of arrival, service length, etc., are difficult to obtain. For single-server multipurpose processors the difficulties are compounded. A certain ergodic post-arrival depletion time is shown to be a true maximum for all delay times of interest. Explicit numerical evaluation of the distribution of this time is available. A heavy-traffic distribution for this time is shown to provide a simple and useful engineering tool with good results and insensitivity to service-time distribution even at modest traffic intensity levels. The relationship to the diffusion approximation for heavy traffic is described.


1972 ◽  
Vol 9 (04) ◽  
pp. 821-831 ◽  
Author(s):  
E. K. Kyprianou

This paper demonstrates that, when in heavy traffic, the quasi-stationary distribution of the virtual waiting time process of both the M/G/1 and GI/M/1 queues as well as the quasi-stationary distribution of the waiting times {Wn } of the M/G/1 queue can be approximated by the same gamma distribution. What characterises this approximating gamma distribution are the first two moments of the service time and inter-arrival time distributions only. A similar approximating behaviour is demonstrated for the queue size process.


1977 ◽  
Vol 9 (01) ◽  
pp. 169-186 ◽  
Author(s):  
Teunis J. Ott

Let X(t) be the virtual waiting-time process of a stable M/G/1 queue. Let R(t) be the covariance function of the stationary process X(t), B(t) the busy-period distribution of X(t); and let E(t) = P{X(t) = 0|X(0) = 0}. For X(t) some heavy-traffic results are given, among which are limiting expressions for R(t) and its derivatives and for B(t) and E(t). These results are used to find the covariance function of stationary Brownian motion on [0, ∞).


Sign in / Sign up

Export Citation Format

Share Document