scholarly journals Innovative ionic liquids as functional agent for wood-polymer composites

Cellulose ◽  
2021 ◽  
Vol 28 (16) ◽  
pp. 10589-10608
Author(s):  
Majka Odalanowska ◽  
Andrzej Skrzypczak ◽  
Sławomir Borysiak

AbstractChemical modification of lignocellulosic fillers is a hydrophobization process that has been used for years in the production of wood-polymer composites (WPCs). However, finding new, more effective modifiers is still a big challenge and remains the subject of much research. This study involved the chemical modification of wood with the use of newly designed ammonium and imidazolium ionic liquids containing reactive functional groups. The effectiveness of the modification was confirmed using FTIR and XRD techniques. The effect of modification of wood on the supermolecular structure and morphology of wood-polymer composites was investigated by X-ray diffraction, hot stage optical microscopy and differential scanning calorimetry. A significant influence of the modifier structure on the shaping of polymorphic varieties of the polymer matrix was demonstrated. The chemical modification also had significant effect on the nucleating properties of the wood fillers, which was confirmed by the determined crystallization parameters (crystallization half-time, crystallization temperature, crystal conversion). Moreover, the formation of a transcrystalline PP layer was noticed, which showed a large variation depending on the structure of the used ionic liquid. The obtained results correlated very well with the results of mechanical tests. It has been shown that it is possible to precisely design an ionic liquid containing a reactive functional group capable of interacting with hydroxyl groups of cellulose molecules. Moreover, the possibility of functionalizing the lignocellulosic material with innovative ionic liquids without the need to use organic solvents has not been demonstrated so far. Graphic abstract

2013 ◽  
Vol 48 (7) ◽  
pp. 783-789 ◽  
Author(s):  
Md. Saiful Islam ◽  
Sinin Hamdan ◽  
Azman Hassan ◽  
Zainal Abidin Talib ◽  
HR Sobuz

2019 ◽  
Vol 770 (5) ◽  
pp. 62-66
Author(s):  
A.A. ASKADSKII ◽  
◽  
T.A. MATSEEVICH ◽  
V.I. KONDRASHCHENKO ◽  
◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 622
Author(s):  
Krzysztof Wilczyński ◽  
Kamila Buziak ◽  
Adrian Lewandowski ◽  
Andrzej Nastaj ◽  
Krzysztof J. Wilczyński

Wood polymer composites are materials with pseudoplastic and viscoelastic properties. They have yield stress and exhibit slip during flow. Studies on extrusion and rheology, as well as on process modeling of these highly filled materials are limited. Extensive rheological and extrusion modeling studies on the wood polymer composite based on the polypropylene matrix were performed. Viscous and slip flow properties were determined (with Rabinowitsch, Bagley, and Mooney corrections) at broad (extrusion) range of shear rate and temperature, using a high-pressure capillary rheometer. Rheological models of Klein and power-law were used for flow modeling, and Navier model was applied for slip modeling. A novel global computer model of WPC extrusion with slip effects has been developed, and process simulations were performed to compute the extrusion parameters (throughput, power consumption, pressure, temperature, etc.), and to study the effect of the material rheological characteristics on the process flow. Simulations were validated experimentally, and were discussed with respect to both rheological and process modeling aspects. It was concluded that the location of the operating point of extrusion process, which defines the thermo-mechanical process conditions, is fundamentally dependent on the rheological materials characteristics, including slip effects.


2021 ◽  
Vol 5 (6) ◽  
pp. 141
Author(s):  
Imen Elloumi ◽  
Ahmed Koubaa ◽  
Wassim Kharrat ◽  
Chedly Bradai ◽  
Ahmed Elloumi

The characterization of the dielectric properties of wood–polymer composites (WPCs) is essential to understand their interaction with electromagnetic fields and evaluate their potential use for new applications. Thus, dielectric spectroscopy monitored the evolution of the dielectric properties of WPCs over a wide frequency range of 1 MHz to 1 GHz. WPCs were prepared using mixtures of different proportions (40%, 50%, and 60%) of wood and bark fibers from various species, high-density polyethylene, and maleated polyethylene (3%) by a two-step process, extrusion and compression molding. Results indicated that wood fibers modify the resistivity of polyethylene at low frequencies but have no effect at microwave frequencies. Increasing the fiber content increases the composites’ dielectric properties. The fibers’ cellulose content explains the variation in the dielectric properties of composites reinforced with fibers from different wood species. Indeed, composites with high cellulose content show higher dielectric constants.


2021 ◽  
Vol 1079 (4) ◽  
pp. 042022
Author(s):  
M A Elesin ◽  
N A Mashkin ◽  
V F Khritankov ◽  
N V Karmanovskaya

2008 ◽  
Vol 83 (2) ◽  
pp. 213-219 ◽  
Author(s):  
Clemens Schwarzinger ◽  
Manuela Leidl ◽  
Robert Putz

2011 ◽  
Vol 264-265 ◽  
pp. 819-824 ◽  
Author(s):  
Md. Rezaur Rahman ◽  
Sinin Hamdan ◽  
M. Saiful Islam ◽  
Md. Shahjahan Mondol

In Malaysia, especially Borneo Island Sarawak has a large scale of tropical wood species. In this study, selected raw tropical wood species namely Artocarpus Elasticus, Artocarpus Rigidus, Xylopia Spp, Koompassia Malaccensis and Eugenia Spp were chemically treated with sodium meta periodate to convert them into wood polymer composites. Manufactured wood polymer composites were characterized using mechanical testing (modulus of elasticity (MOE), modulus of rupture (MOR), static Young’s modulus) and decay resistance test. Modulus of elasticity and modulus of rupture were calculated using three point bending test. Static Young’s modulus and decay resistance were calculated using compression parallel to gain test and natural laboratory decay test respectively. The manufactured wood polymer composites yielded higher modulus of elasticity, modulus of rupture and static Young’s modulus. Wood polymer composite had high resistant to decay exposure, while Eugenia Spp wood polymer composite had highly resistant compared to the other ones.


Sign in / Sign up

Export Citation Format

Share Document