A new deep spatial transformer convolutional neural network for image saliency detection

2018 ◽  
Vol 22 (3) ◽  
pp. 243-256 ◽  
Author(s):  
Xinsheng Zhang ◽  
Teng Gao ◽  
Dongdong Gao
2018 ◽  
Vol 61 (5) ◽  
pp. 1461-1474 ◽  
Author(s):  
Zhongqi Lin ◽  
Shaomin Mu ◽  
Aiju Shi ◽  
Chao Pang ◽  
Xiaoxiao Sun

Abstract. Traditional methods for detecting maize leaf diseases (such as leaf blight, sooty blotch, brown spot, rust, and purple leaf sheaf) are typically labor-intensive and strongly subjective. With the aim of achieving high accuracy and efficiency in the identification of maize leaf diseases from digital imagery, this article proposes a novel multichannel convolutional neural network (MCNN). The MCNN is composed of an input layer, five convolutional layers, three subsampling layers, three fully connected layers, and an output layer. Using a method that imitates human visual behavior in video saliency detection, the first and second subsampling layers are connected directly with the first fully connected layer. In addition, the mixed modes of pooling and normalization methods, rectified linear units (ReLU), and dropout are introduced to prevent overfitting and gradient diffusion. The learning process corresponding to the network structure is also illustrated. At present, there are no large-scale images of maize leaf disease for use as experimental samples. To test the proposed MCNN, 10,820 RGB images containing five types of disease were collected from maize planting areas in Shandong Province, China. The original images could not be used directly in identification experiments because of noise and irrelevant regions. They were therefore denoised and segmented by homomorphic filtering and region of interest (ROI) segmentation to construct a standard database. A series of experiments on 8 GB graphics processing units (GPUs) showed that the MCNN could achieve an average accuracy of 92.31% and a high efficiency in the identification of maize leaf diseases. The multichannel design and the integration of different innovations proved to be helpful methods for boosting performance. Keywords: Artificial intelligence, Convolutional neural network, Deep learning, Image classification, Machine learning algorithms, Maize leaf disease.


2019 ◽  
Vol 349 ◽  
pp. 145-155 ◽  
Author(s):  
Xinchen Lin ◽  
Yang Tang ◽  
Huaglory Tianfield ◽  
Feng Qian ◽  
Weimin Zhong

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Songshang Zou ◽  
Wenshu Chen ◽  
Hao Chen

Image saliency object detection can rapidly extract useful information from image scenes and further analyze it. At present, the traditional saliency target detection technology still has the edge of outstanding target that cannot be well preserved. Convolutional neural network (CNN) can extract highly general deep features from the images and effectively express the essential feature information of the images. This paper designs a model which applies CNN in deep saliency object detection tasks. It can efficiently optimize the edges of foreground objects and realize highly efficient image saliency detection through multilayer continuous feature extraction, refinement of layered boundary, and initial saliency feature fusion. The experimental result shows that the proposed method can achieve more robust saliency detection to adjust itself to complex background environment.


2021 ◽  
Vol 11 (10) ◽  
pp. 2610-2617
Author(s):  
K. Uthra Devi ◽  
R. Gomathi

To perceive the tumors found in brain and their treatment, experts manually note and identify different Regions of Interest (ROI). To overcome the faults and divergences during this state, automated analysis is performed. A unique technique is used to classify the tumor section of the brain from an MRI is proposed using saliency-focused image depiction and optimization in classification based on CNN. Primarily, the MRI images are pre-processed using the Canny Edge Finding algorithm and then those images are represented as saliency driven based on Robust Background Saliency Detection (RBD). Followed by the abstraction of features then classifying the image is performed using CNN along with ADAM optimization. The implementation is accomplished, and the results are analyzed, showing that it outperforms previous techniques.


Sign in / Sign up

Export Citation Format

Share Document