A shallow water equation based on displacement and pressure and its numerical solution

2017 ◽  
Vol 17 (6) ◽  
pp. 1099-1126 ◽  
Author(s):  
Feng Wu ◽  
Wan-Xie Zhong
2013 ◽  
Vol 80 (2) ◽  
Author(s):  
Ali Triki

Based on the finite element method, the numerical solution of the shallow-water equation for one-dimensional (1D) unsteady flows was established. To respect the stability criteria, the time step of the method was dependent on the space step and flow velocity. This method was used to avoid the restriction due to the wave celerity variation in the computational analysis when using the method of characteristics. Furthermore, boundary conditions are deduced directly from the scheme without using characteristics equations. For the numerical solution, a general-purpose computer program, based on the finite element method (FEM), is coded in fortran to analyze the dynamic response of the open channel flow. This program is able to handle rectangular, triangular, or trapezoidal sections. Some examples solved with the finite element method are reported herein. The first involves routing a discharge hydrograph down a rectangular channel. The second example consists of routing a sudden shutoff of all flow at the downstream end of a rectangular channel. The third one deals with routing a discharge hydrograph down a trapezoidal channel. These examples are taken from the quoted literature text book. Numerical results agree well with those obtained by these authors and show that the proposed method is consistent, accurate, and highly stable in capturing discontinuities propagation in free surface flows.


2020 ◽  
Vol 8 (1) ◽  
pp. 19-34
Author(s):  
Bandung Arry Sanjoyo ◽  
Mochamad Hariadi ◽  
Mauridhi Hery Purnomo

Many game applications require fluid flow visualization of shallow water, especially dam-break flow. A Shallow Water Equation (SWE) is a mathematical model of shallow water flow which can be used to compute the flow depth and velocity.  We propose a stable algorithm for visualization of dam-break flow on flat and flat with bumps topography. We choose Lax-Friedrichs scheme as the numerical method for solving the SWE. Then, we investigate the consistency, stability, and convergence of the scheme. Finally, we transform the strategy into a visualization algorithm of SWE and analyze the complexity. The results of this paper are: 1) the Lax-Friedrichs scheme that is consistent and conditionally stable; furthermore, if the stability condition is satisfied, the scheme is convergent; 2) an algorithm to visualize flow depth and velocity which has complexity O(N) in each time iteration. We have applied the algorithm to flat and flat with bumps topography. According to visualization results, the numerical solution is very close to analytical solution in the case of flat topography. In the case of flat with bumps topography, the algorithm can visualize the dam-break flow and after a long time the numerical solution is very close to the analytical steady-state solution. Hence the proposed visualization algorithm is suitable for game applications containing flat with bumps environments.


PAMM ◽  
2021 ◽  
Vol 20 (S1) ◽  
Author(s):  
Süleyman Yıldız ◽  
Pawan Goyal ◽  
Peter Benner ◽  
Bülent Karasözen

2016 ◽  
Vol 43 (4) ◽  
pp. 82-87 ◽  
Author(s):  
Kentaro Sano ◽  
Fumiya Kono ◽  
Naohito Nakasato ◽  
Alexander Vazhenin ◽  
Stanislav Sedukhin

Sign in / Sign up

Export Citation Format

Share Document