A Finite Element Solution of the Unidimensional Shallow-Water Equation

2013 ◽  
Vol 80 (2) ◽  
Author(s):  
Ali Triki

Based on the finite element method, the numerical solution of the shallow-water equation for one-dimensional (1D) unsteady flows was established. To respect the stability criteria, the time step of the method was dependent on the space step and flow velocity. This method was used to avoid the restriction due to the wave celerity variation in the computational analysis when using the method of characteristics. Furthermore, boundary conditions are deduced directly from the scheme without using characteristics equations. For the numerical solution, a general-purpose computer program, based on the finite element method (FEM), is coded in fortran to analyze the dynamic response of the open channel flow. This program is able to handle rectangular, triangular, or trapezoidal sections. Some examples solved with the finite element method are reported herein. The first involves routing a discharge hydrograph down a rectangular channel. The second example consists of routing a sudden shutoff of all flow at the downstream end of a rectangular channel. The third one deals with routing a discharge hydrograph down a trapezoidal channel. These examples are taken from the quoted literature text book. Numerical results agree well with those obtained by these authors and show that the proposed method is consistent, accurate, and highly stable in capturing discontinuities propagation in free surface flows.

2019 ◽  
Vol 8 (8) ◽  
pp. 1640-1647 ◽  
Author(s):  
Shahid Ali Khan ◽  
Yufeng Nie ◽  
Bagh Ali

The current study investigates the numerical solution of steady heat transportation in magnetohydrodynamics flow of micropolar fluids over a porous shrinking/stretching sheet with stratified medium and buoyancy force. Based on similarity transformation, the partial differential governing equations are assimilated into a set of nonlinear ODEs, which are numerically solved by the finite element method. All obtained unknown functions are discussed in detail after plotting the numerical results against different arising thermophysical parameters namely, suction, magnetic, stratification, heat source, and buoyancy parameter. Under the limiting case, the numerical solution of the velocity and temperature is compared with present work. Better consistency between the two sets of solutions was determined. To verify the convergence of the numerical solution, the calculation is made by reducing the mesh size. The present study finds applications in materials processing and demonstrates convergence characteristics for the finite element method code.


2012 ◽  
Vol 446-449 ◽  
pp. 2694-2698
Author(s):  
Tae Hwa Jung

Effective numerical technique for treatment of inclined boundary in the finite element method was introduced. Finite element method was frequently used to analyze hydraulic phenomena in the coastal zone because it can be applied to irregular and complex geometry. In this study, we introduced the way to treat the boundary condition over an inclined bottom.


Sign in / Sign up

Export Citation Format

Share Document