Influence of temperature on pine wilt disease progression in Pinus thunbergii seedlings

2019 ◽  
Vol 156 (2) ◽  
pp. 581-590 ◽  
Author(s):  
R. Yamaguchi ◽  
K. Matsunaga ◽  
A. Watanabe

2019 ◽  
Vol 49 (4) ◽  
pp. e12518 ◽  
Author(s):  
Rimi Yamaguchi ◽  
Koji Matsunaga ◽  
Tomonori Hirao ◽  
Miho Tamura ◽  
Atsushi Watanabe


1997 ◽  
Vol 75 (2) ◽  
pp. 346-351 ◽  
Author(s):  
Kyoko Ishida ◽  
Taizo Hogetsu

The role of cortical resin canals in the early development of a pine wilt disease in Japanese black pine, Pinus thunbergii, was studied. A part of the bark of a 2 cm long segment from a current-year stem was removed by a tangential cut with a razor blade. Both cortex-exposed segments with cut cortical resin canals (designated as +RC segments) and those without cut resin canals (–RC segments) were obtained by chance. When a virulent nematode isolate (S6-1) was inoculated onto the cut surface, the surface of the +RC segments turned brown 4 d after inoculation, and in some segments this browning occurred more intensely around cortical resin canals. When segments were cut transversely at the middle, the transverse cut surface of the inoculated +RC segments was brown and fragile, but that of the inoculated –RC segments was pale green and stable, as was that of the non-inoculated controls. Correspondingly, tissue cells including epithelial cells of the cortical resin canal of the +RC segments were all dead, but those of the –RC segments and the controls were alive. When nematodes were inoculated onto the inner surface (cambium side) of a bark peeling at which cambial xylem cells were exposed, they did not kill the cambial cells. When inoculated on the transverse cut end of a bark peeling from which nematodes would enter resin canals, nematodes killed all cells in the peeling. The above results indicate that nematodes do not kill cortical cells immediately after inoculation but become harmful to pine cells after living in cortical resin canals. Key words: Bursaphelenchus xylophilus, pine wilt disease, pine wood nematode, Pinus thunbergii, resin canal.



2009 ◽  
Vol 91 (4) ◽  
pp. 266-276 ◽  
Author(s):  
Mineko Ohira ◽  
Noritsugu Kuramoto ◽  
Yoshitake Fujisawa ◽  
Susumu Shiraishi


Nematology ◽  
2003 ◽  
Vol 5 (6) ◽  
pp. 899-906 ◽  
Author(s):  
Bo Guang Zhao ◽  
Hu Li Wang ◽  
Su Fen Han ◽  
Zheng Ming Han

Abstract Bacteria carried by the pine wood nematode (PWN), Bursaphelenchus xylophilus, from both healthy and diseased Pinus thunbergii and P. massoniana were studied in five main pine wilt disease epidemic provinces in P. R. China. No bacteria were found in healthy pines but were found on PWN from all samples collected from diseased trees. Twenty-four bacteria strains were isolated from the nematodes and were identified by a combination of classical and automatic testing bacteriology (ATB) expression methods. Bioassay showed that 17 of the 24 identified strains produced phytotoxins. Eleven of these 17 phytotoxin producers belonged to the genus Pseudomonas. Glasshouse and field inoculation tests using sterile techniques showed that both PWN and the toxin-producing bacteria carried were necessary to induce disease. We hypothesise that pine wilt disease is a complex, induced by both PWN and the bacteria it carries.





1997 ◽  
Vol 2 (1) ◽  
pp. 39-43 ◽  
Author(s):  
Katsumi Togashi ◽  
Kaori Aida ◽  
Katsunori Nakamura ◽  
Takao Horikoshi ◽  
Fumiki Takahashi


Sign in / Sign up

Export Citation Format

Share Document