pine wilt
Recently Published Documents


TOTAL DOCUMENTS

373
(FIVE YEARS 100)

H-INDEX

27
(FIVE YEARS 4)

2022 ◽  
Vol 505 ◽  
pp. 119890
Author(s):  
Zhuoqing Hao ◽  
Jixia Huang ◽  
Xiaodong Li ◽  
Hong Sun ◽  
Guofei Fang

2022 ◽  
Vol 12 ◽  
Author(s):  
Hee Won Jeon ◽  
Ae Ran Park ◽  
Minjeong Sung ◽  
Namgyu Kim ◽  
Mohamed Mannaa ◽  
...  

Pine wilt disease (PWD), caused by the pinewood nematode, is the most destructive disease in pine forest ecosystems worldwide. Extensive research has been done on PWD, but effective disease management is yet to be devised. Generally, plants can resist pathogen attack via a combination of constitutive and inducible defenses. Systemic acquired resistance (SAR) is an inducible defense that occurs by the localized infection of pathogens or treatment with elicitors. To manage PWD by SAR in pine trees, we tested previously known 12 SAR elicitors. Among them, methyl salicylate (MeSA) was found to induce resistance against PWD in Pinus densiflora seedlings. In addition, the foliar applications of the dispersible concentrate-type formulation of MeSA (MeSA 20 DC) and the emulsifiable concentrate-type formulation of MeSA (MeSA 20 EC) resulted in significantly reduced PWD in pine seedlings. In the field test using 10-year-old P. densiflora trees, MeSA 20 DC showed a 60% decrease in the development of PWD. Also, MeSA 20 EC gave the best results when applied at 0.1 mM concentration 2 and 1 weeks before pinewood nematode (PWN) inoculation in pine seedlings. qRT-PCR analysis confirmed that MeSA induced the expression of defense-related genes, indicating that MeSA can inhibit and delay the migration and reproduction of PWN in pine seedlings by modulating gene expression. These results suggest that foliar application of MeSA could reduce PWD incidence by inducing resistance and provide an economically feasible alternative to trunk-injection agents for PWD management.


Author(s):  
Hongwei Zhou ◽  
Xinpei Yuan ◽  
Huanyu Zhou ◽  
Hengyu Shen ◽  
Lin Ma ◽  
...  

AbstractPine wilt disease caused by the pinewood nematode Bursaphelenchus xylophilus has led to the death of a large number of pine trees in China. This destructive disease has the characteristics of bring wide-spread, fast onset, and long incubation time. Most importantly, in China, the fatality rate in pines is as high as 100%. The key to reducing this mortality is how to quickly find the infected trees. We proposed a method of automatically identifying infected trees by a convolution neural network and bounding box tool. This method rapidly locates the infected area by classifying and recognizing remote sensing images obtained by high resolution earth observation Satellite. The recognition accuracy of the test data set was 99.4%, and the remote sensing image combined with convolution neural network algorithm can identify and determine the distribution of the infected trees. It can provide strong technical support for the prevention and control of pine wilt disease.


2021 ◽  
Vol 14 (1) ◽  
pp. 150
Author(s):  
Jie You ◽  
Ruirui Zhang ◽  
Joonwhoan Lee

Pine wilt is a devastating disease that typically kills affected pine trees within a few months. In this paper, we confront the problem of detecting pine wilt disease. In the image samples that have been used for pine wilt disease detection, there is high ambiguity due to poor image resolution and the presence of “disease-like” objects. We therefore created a new dataset using large-sized orthophotographs collected from 32 cities, 167 regions, and 6121 pine wilt disease hotspots in South Korea. In our system, pine wilt disease was detected in two stages: n the first stage, the disease and hard negative samples were collected using a convolutional neural network. Because the diseased areas varied in size and color, and as the disease manifests differently from the early stage to the late stage, hard negative samples were further categorized into six different classes to simplify the complexity of the dataset. Then, in the second stage, we used an object detection model to localize the disease and “disease-like” hard negative samples. We used several image augmentation methods to boost system performance and avoid overfitting. The test process was divided into two phases: a patch-based test and a real-world test. During the patch-based test, we used the test-time augmentation method to obtain the average prediction of our system across multiple augmented samples of data, and the prediction results showed a mean average precision of 89.44% in five-fold cross validation, thus representing an increase of around 5% over the alternative system. In the real-world test, we collected 10 orthophotographs in various resolutions and areas, and our system successfully detected 711 out of 730 potential disease spots.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1679
Author(s):  
Juha Tuomola ◽  
Hannah Gruffudd ◽  
Kimmo Ruosteenoja ◽  
Salla Hannunen

Pine wilt disease (PWD) caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus) can, in suitable conditions, lead to mass mortality of susceptible trees. In the European Union, PWN is a quarantine pest. To support PWN risk management in Finland, we assessed the suitability of the Finnish present and future climate for both PWD and PWN establishment inside susceptible healthy trees. The former was done using the mean summer temperature concept and the latter by relating annual growing degree days to the likelihoods of PWN extinction and establishment inside healthy trees. The likelihoods were derived from the previously published modelling of PWN population dynamics for 139 locations in Germany. Both assessments were conducted using 10 × 10 km resolution climate data from 2000–2019 and Finland-specific climate change projections for 2030–2080. The results indicate that the present Finnish climate is too cool for both PWD and PWN establishment inside healthy trees. Furthermore, even global warming does not appear to turn the Finnish climate suitable for PWD or PWN establishment inside healthy trees by 2080, except under the worst-case representative concentration pathway scenario (RCP8.5). Consequently, giving top priority to PWN when allocating resources for biosecurity activities in Finland might deserve reconsideration.


Author(s):  
Zhao Sun ◽  
Yifu Wang ◽  
Lei Pan ◽  
Yunhong Xie ◽  
Bo Zhang ◽  
...  

AbstractPine wilt disease (PWD) is currently one of the main causes of large-scale forest destruction. To control the spread of PWD, it is essential to detect affected pine trees quickly. This study investigated the feasibility of using the object-oriented multi-scale segmentation algorithm to identify trees discolored by PWD. We used an unmanned aerial vehicle (UAV) platform equipped with an RGB digital camera to obtain high spatial resolution images, and multi-scale segmentation was applied to delineate the tree crown, coupling the use of object-oriented classification to classify trees discolored by PWD. Then, the optimal segmentation scale was implemented using the estimation of scale parameter (ESP2) plug-in. The feature space of the segmentation results was optimized, and appropriate features were selected for classification. The results showed that the optimal scale, shape, and compactness values of the tree crown segmentation algorithm were 56, 0.5, and 0.8, respectively. The producer’s accuracy (PA), user’s accuracy (UA), and F1 score were 0.722, 0.605, and 0.658, respectively. There were no significant classification errors in the final classification results, and the low accuracy was attributed to the low number of objects count caused by incorrect segmentation. The multi-scale segmentation and object-oriented classification method could accurately identify trees discolored by PWD with a straightforward and rapid processing. This study provides a technical method for monitoring the occurrence of PWD and identifying the discolored trees of disease using UAV-based high-resolution images.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yu-Long Li ◽  
Chang-Ji Fan ◽  
Xiao-Hui Jiang ◽  
Xing-Yi Tian ◽  
Zheng-Min Han

Pine wilt disease is the most devastating pine disease caused by Bursaphelenchus xylophilus. Bursaphelenchus mucronatus is morphologically similar to B. xylophilus and geographically overlaps in its distribution. Although interspecific hybridization of the two nematodes has been performed in vitro, the dynamic regularity of hybrid formation and its risk in forests has not been well evaluated. In this study, a hybrid of B. xylophilus and Bursaphelenchus mucronatus mucronatus was identified in the laboratory and fields by molecular markers. The heterozygosity of ITS-5.8S loci for identification was unstable in the hybrid population, and the allele inherited from B. m. mucronatus was lost over several generations. We also provided evidence that hybrids existed in some new epidemic areas, while old epidemic areas were usually dominated by B. xylophilus. Hybrids could be generated when B. m. mucronatus was invaded by B. xylophilus, and the pathogenicity of the hybrids was similar to that of B. xylophilus. These findings may improve the understanding of the natural hybridization between B. xylophilus and B. m. mucronatus and pathogenic variation in pine wilt disease, providing new insights for future studies on disease detection, transmission, and quarantine.


2021 ◽  
Vol 13 (20) ◽  
pp. 4065
Author(s):  
Run Yu ◽  
Youqing Luo ◽  
Haonan Li ◽  
Liyuan Yang ◽  
Huaguo Huang ◽  
...  

As one of the most devastating disasters to pine forests, pine wilt disease (PWD) has caused tremendous ecological and economic losses in China. An effective way to prevent large-scale PWD outbreaks is to detect and remove the damaged pine trees at the early stage of PWD infection. However, early infected pine trees do not show obvious changes in morphology or color in the visible wavelength range, making early detection of PWD tricky. Unmanned aerial vehicle (UAV)-based hyperspectral imagery (HI) has great potential for early detection of PWD. However, the commonly used methods, such as the two-dimensional convolutional neural network (2D-CNN), fail to simultaneously extract and fully utilize the spatial and spectral information, whereas the three-dimensional convolutional neural network (3D-CNN) is able to collect this information from raw hyperspectral data. In this paper, we applied the residual block to 3D-CNN and constructed a 3D-Res CNN model, the performance of which was then compared with that of 3D-CNN, 2D-CNN, and 2D-Res CNN in identifying PWD-infected pine trees from the hyperspectral images. The 3D-Res CNN model outperformed the other models, achieving an overall accuracy (OA) of 88.11% and an accuracy of 72.86% for detecting early infected pine trees (EIPs). Using only 20% of the training samples, the OA and EIP accuracy of 3D-Res CNN can still achieve 81.06% and 51.97%, which is superior to the state-of-the-art method in the early detection of PWD based on hyperspectral images. Collectively, 3D-Res CNN was more accurate and effective in early detection of PWD. In conclusion, 3D-Res CNN is proposed for early detection of PWD in this paper, making the prediction and control of PWD more accurate and effective. This model can also be applied to detect pine trees damaged by other diseases or insect pests in the forest.


2021 ◽  
Vol 46 (4) ◽  
Author(s):  
Muhammad Ozair ◽  
Takasar Hussain ◽  
Kashif Ali Abro ◽  
Sajid Jameel ◽  
Aziz Ullah Awan

Sign in / Sign up

Export Citation Format

Share Document