pinewood nematode
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 78)

H-INDEX

28
(FIVE YEARS 4)

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 114
Author(s):  
Yang Wang ◽  
Mingxia Jin ◽  
Lichao Wang ◽  
Ailin Yu ◽  
Guai Xie ◽  
...  

In order to study the key gene in internal causes of pinewood nematode (PWN), Bursaphelenchus xylophilus, a departure from its vector beetle, Monochamus alternatus, we collected PWNs extracted from newly emerged M. alternatus and beetles 7 days after emergence. The total RNAs of the two groups of PWNs were extracted, transcriptomes sequencing was performed, and gene expression differences between the two groups of PWN were analyzed. It was found that the expression of the choline-phosphate cytidylyltransferase gene (pcyt-1) was markedly up-regulated. After inhibition of pcyt-1 expression by RNA interference, the rate of lipid degradation in PWN decreased significantly, and the motility of PWN also decreased significantly. The analysis identified that phosphatidylcholine could promote the emulsification and degradation of neutral lipid granules in PWN, which provides sufficient energy for PWN departure from M. alternatus. The up-regulation of the gene pcyt-1 is an important internal factor for PWN departure from its vector.


2022 ◽  
Vol 10 (1) ◽  
pp. 168
Author(s):  
David Pires ◽  
Cláudia S. L. Vicente ◽  
Maria L. Inácio ◽  
Manuel Mota

The pinewood nematode (PWN), Bursaphelenchus xylophilus, is the causal agent of pine wilt disease (PWD) and a quarantine organism in many countries. Managing PWD involves strict regulations and heavy contingency plans, and present climate change scenarios predict a spread of the disease. The urgent need for sustainable management strategies has led to an increasing interest in promising biocontrol agents capable of suppressing the PWN, like endoparasitic nematophagous fungi of the Esteya genus. Here, we review different aspects of the biology and ecology of these nematophagous fungi and provide future prospects.


2022 ◽  
Vol 12 ◽  
Author(s):  
Hee Won Jeon ◽  
Ae Ran Park ◽  
Minjeong Sung ◽  
Namgyu Kim ◽  
Mohamed Mannaa ◽  
...  

Pine wilt disease (PWD), caused by the pinewood nematode, is the most destructive disease in pine forest ecosystems worldwide. Extensive research has been done on PWD, but effective disease management is yet to be devised. Generally, plants can resist pathogen attack via a combination of constitutive and inducible defenses. Systemic acquired resistance (SAR) is an inducible defense that occurs by the localized infection of pathogens or treatment with elicitors. To manage PWD by SAR in pine trees, we tested previously known 12 SAR elicitors. Among them, methyl salicylate (MeSA) was found to induce resistance against PWD in Pinus densiflora seedlings. In addition, the foliar applications of the dispersible concentrate-type formulation of MeSA (MeSA 20 DC) and the emulsifiable concentrate-type formulation of MeSA (MeSA 20 EC) resulted in significantly reduced PWD in pine seedlings. In the field test using 10-year-old P. densiflora trees, MeSA 20 DC showed a 60% decrease in the development of PWD. Also, MeSA 20 EC gave the best results when applied at 0.1 mM concentration 2 and 1 weeks before pinewood nematode (PWN) inoculation in pine seedlings. qRT-PCR analysis confirmed that MeSA induced the expression of defense-related genes, indicating that MeSA can inhibit and delay the migration and reproduction of PWN in pine seedlings by modulating gene expression. These results suggest that foliar application of MeSA could reduce PWD incidence by inducing resistance and provide an economically feasible alternative to trunk-injection agents for PWD management.


2022 ◽  
Vol 12 ◽  
Author(s):  
Shouping Cai ◽  
Jiayu Jia ◽  
Chenyang He ◽  
Liqiong Zeng ◽  
Yu Fang ◽  
...  

Pinewood nematode (PWN), the causal agent of pine wilt disease (PWD), causes massive global losses of Pinus species each year. Bacteria and fungi existing in symbiosis with PWN are closely linked with the pathogenesis of PWD, but the relationship between PWN pathogenicity and the associated microbiota is still ambiguous. This study explored the relationship between microbes and the pathogenicity of PWN by establishing a PWN-associated microbe library, and used this library to generate five artificial PWN–microbe symbiont (APMS) assemblies with gnotobiotic PWNs. The fungal and bacterial communities of different APMSs (the microbiome) were explored by next-generation sequencing. Furthermore, different APMSs were used to inoculate the same Masson pine (Pinus massoniana) cultivar, and multi-omics (metabolome, phenomics, and transcriptome) data were obtained to represent the pathogenicity of different APMSs at 14 days post-inoculation (dpi). Significant positive correlations were observed between microbiome and transcriptome or metabolome data, but microbiome data were negatively correlated with the reactive oxygen species (ROS) level in the host. Five response genes, four fungal genera, four bacterial genera, and nineteen induced metabolites were positively correlated with the ROS level, while seven induced metabolites were negatively correlated. To further explore the function of PWN-associated microbes, single genera of functional microbes (Mb1–Mb8) were reloaded onto gnotobiotic PWNs and used to inoculate pine tree seedlings. Three of the genera (Cladophialophora, Ochroconis, and Flavobacterium) decreased the ROS level of the host pine trees, while only one genus (Penicillium) significantly increased the ROS level of the host pine tree seedlings. These results demonstrate a clear relationship between associated microbes and the pathogenicity of PWN, and expand the knowledge on the interaction between PWD-induced forest decline and the PWN-associated microbiome.


Author(s):  
Hongwei Zhou ◽  
Xinpei Yuan ◽  
Huanyu Zhou ◽  
Hengyu Shen ◽  
Lin Ma ◽  
...  

AbstractPine wilt disease caused by the pinewood nematode Bursaphelenchus xylophilus has led to the death of a large number of pine trees in China. This destructive disease has the characteristics of bring wide-spread, fast onset, and long incubation time. Most importantly, in China, the fatality rate in pines is as high as 100%. The key to reducing this mortality is how to quickly find the infected trees. We proposed a method of automatically identifying infected trees by a convolution neural network and bounding box tool. This method rapidly locates the infected area by classifying and recognizing remote sensing images obtained by high resolution earth observation Satellite. The recognition accuracy of the test data set was 99.4%, and the remote sensing image combined with convolution neural network algorithm can identify and determine the distribution of the infected trees. It can provide strong technical support for the prevention and control of pine wilt disease.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2614
Author(s):  
Jorge M. S. Faria ◽  
Pedro Barbosa ◽  
Paulo Vieira ◽  
Cláudia S. L. Vicente ◽  
Ana Cristina Figueiredo ◽  
...  

The impacts of a rapidly changing environment together with the growth in global trade activities has promoted new plant pest pandemic events in forest ecosystems. The pinewood nematode (PWN), Bursaphelenchus xylophilus, causes strong worldwide economic and ecological impacts. Direct control is performed through trunk injection of powerful nematicides, however many of these (hemi)synthetic compounds have raised ecological and human health concerns for affecting non-target species and accumulating in food products. As sustainable alternatives, essential oils (EOs) have shown very promising results. In this work, available literature on the direct activity of EOs against PWN is reviewed, as a contribution to advance the search for safer and greener biopesticides to be used in sustainable PWD pest management strategies. For the first time, important parameters concerning the bioassays performed, the PWNs bioassayed, and the EOs used are summarized and comparatively analyzed. Ultimately, an overview of the chemical composition of the most active EOs allowed to uncover preliminary guidelines for anti-PWN EO efficiency. The analysis of important information on the volatile phytochemicals composing nematicidal EOs provides a solid basis to engineer sustainable biopesticides capable of controlling the PWN under an integrated pest management framework and contributes to improved forest health.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ana M. Rodrigues ◽  
Isabel Carrasquinho ◽  
Carla António

The pinewood nematode (PWN) Bursaphelenchus xylophilus is the causal agent of the pine wilt disease (PWD) and represents one of the major threats to conifer forests. The detection of the PWN in Portugal, associated with Pinus pinaster, increased the concern of its spread to European forests. Despite its susceptibility to PWD, genetic variability found among P. pinaster populations has been associated with heritable PWD resistance. Understanding the mechanisms underlying tree resistance constitutes a valuable resource for breeding programs toward more resilient forest plantations. This study investigated changes in anatomy, chlorophyll a fluorescence (ChlF), and primary metabolism in susceptible and resistant P. pinaster half-sib plants, after PWN inoculation. Susceptible plants showed a general shutdown of central metabolism, osmolyte accumulation, photosynthetic inhibition, and a decrease in the plant water status. The ChlF transient rise (OJIP curve) revealed the appearance of L- and K-bands, indicators of environmental stress. In contrast, resistant plants revealed a regulated defense response and were able to restrict PWN migration and cellular damage. Furthermore, the accumulation of γ-aminobutyric acid (GABA) and succinate suggested a role of these metabolites in PWD resistance and the possible activation of the GABA shunt. Altogether, these results provide new insights to the role of primary metabolism in PWD resistance and in the selection of resistant phenotypes for disease mitigation.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1549
Author(s):  
Xu Chu ◽  
Qiuyu Ma ◽  
Meijiao Yang ◽  
Guoqiang Li ◽  
Jinyan Liu ◽  
...  

The vectors of pinewood nematode of Bursaphelenchus xylophilus (Steiner & Bührer, 1934) are mainly known as xylophagous beetles. Understanding the composition and distribution of these xylophagous beetles in host pine trees infected by PWN is critical to control the spread of PWN. In this study, we investigated the community structures of the xylophagous beetles in two main host trees in Fujian and Shandong, Pinus massoniana Lamb. and Pinus thunbergia Parl., in different stages of infection. All beetles were collected by dissecting the whole pine trees and then identified by their morphological characteristics and COI genes. The results showed that the diversity of xylophagous beetles was different not only between the two host pine trees but also among the different infection stages. The diversity of P. massoniana xylophagous beetles was significantly higher than that of P. thunbergii, and there were also significant differences in the different stages of PWN infection. In total, Scolytinae was the most common (53.70%), followed by Curculionidae (18.26%), Cerambycidae (16.31%), and Cleridae (6.04%). Monochamus alternatus, the most important vector of PWN, occupied a large niche and showed different aggregation positions during the three infection stages in both host trees. This result might be related to the resistance of bark beetles to host trees and competition with other xylophagous beetles. The community diversity of xylophagous beetles was jointly affected by both the infection stages of PWN and the spatial niche of xylophagous beetles. Knowledge of the diversity and competitive relationships among xylophagous beetles might help regulate the population dynamics of these beetles.


Sign in / Sign up

Export Citation Format

Share Document