Surface ozone and meteorological condition in a single year at an urban site in central–eastern China

2008 ◽  
Vol 151 (1-4) ◽  
pp. 127-141 ◽  
Author(s):  
Wenpo Shan ◽  
Yongquan Yin ◽  
Jianda Zhang ◽  
Xia Ji ◽  
Xingyan Deng
2009 ◽  
Vol 9 (16) ◽  
pp. 6217-6227 ◽  
Author(s):  
T. Wang ◽  
X. L. Wei ◽  
A. J. Ding ◽  
C. N. Poon ◽  
K. S. Lam ◽  
...  

Abstract. Tropospheric ozone is of great importance with regard to air quality, atmospheric chemistry, and climate change. In this paper we report the first continuous record of surface ozone in the background atmosphere of South China. The data were obtained from 1994 to 2007 at a coastal site in Hong Kong, which is strongly influenced by the outflow of Asian continental air during the winter and the inflow of maritime air from the subtropics in the summer. Three methods are used to derive the rate of change in ozone. A linear fit to the 14-year record shows that the ozone concentration increased by 0.58 ppbv/yr, whereas comparing means in years 1994–2000 and 2001–2007 gives an increase of 0.87 ppbv/yr for a 7-year period. The ozone changes in air masses from various source regions are also examined. Using local wind and carbon monoxide (CO) data to filter out local influence, we find that ozone increased by 0.94 ppbv/yr from 1994–2000 to 2001–2007 in air masses from Eastern China, with similar changes in the other two continent-influenced air-mass groups, but no statistically significant change in the marine air. An examination of the nitrogen dioxide (NO2) column obtained from GOME and SCIAMACHY reveals an increase in atmospheric NO2 in China's three fastest developing coastal regions, whereas NO2 in other parts of Asia decreased during the same period, and no obvious trend over the main shipping routes in the South China Sea was indicated. Thus the observed increase in background ozone in Hong Kong is most likely due to the increased emissions of NO2 (and possibly volatile organic compounds (VOCs) as well) in the upwind coastal regions of mainland China. The CO data at Hok Tsui showed less definitive changes compared to the satellite NO2 column. The increase in background ozone likely made a strong contribution (81%) to the rate of increase in "total ozone" at an urban site in Hong Kong, suggesting the need to consider distant sources when developing long-term strategies to mitigate local ozone pollution.


2018 ◽  
Author(s):  
Lei Sun ◽  
Likun Xue ◽  
Yuhang Wang ◽  
Longlei Li ◽  
Jintai Lin ◽  
...  

Abstract. Recent studies have shown that surface ozone (O3) concentrations over Central Eastern China (CEC) have increased significantly during the past decade. We quantified the effects of changes in meteorological conditions and O3 precursor emissions on surface O3 levels over CEC between July 2003 and July 2015 using the GEOS-Chem model. The simulated monthly mean maximum daily 8-h average O3 concentration (MDA8 O3) in July increased by approximately 13.6 %, from 65.5 ± 7.9 ppbv (2003) to 74.4 ± 8.7 ppbv (2015), comparable to the observed results. The change in meteorology led to an increase of MDA8 O3 of 5.8 ± 3.9 ppbv over the central part of CEC, in contrast to a decrease of about −0.8 ± 3.5 ppbv over the eastern part of the region. In comparison, the MDA8 O3 over the central and eastern parts of CEC increased by 3.5 ± 1.4 ppbv and 5.6 ± 1.8 ppbv due to the increased emissions. The increase in regional averaged O3 resulting from the emission increase (4.0 ± 1.9 ppbv) was higher than that caused by meteorological changes (3.1 ± 4.9 ppbv) relative to the 2003 standard simulation, while the regions with larger O3 increases showed a higher sensitivity to meteorological conditions than to emission changes. Sensitivity tests indicate that increased levels of anthropogenic non-methane volatile organic compounds (NMVOCs) dominate the O3 increase over the eastern part of CEC, and anthropogenic nitrogen oxides (NOx) mainly increase O3 concentrations over the central and western parts, while decrease O3 in a few urban areas in the eastern part. Process analysis showed that net photochemical production and meteorological conditions (transport in particular) are two important factors that influence O3 levels over the CEC. The results of this study suggest a need to further assess the effectiveness of control strategies for O3 pollution in the context of regional meteorology, transboundary transport, and anthropogenic emission changes.


2019 ◽  
Vol 19 (3) ◽  
pp. 1455-1469 ◽  
Author(s):  
Lei Sun ◽  
Likun Xue ◽  
Yuhang Wang ◽  
Longlei Li ◽  
Jintai Lin ◽  
...  

Abstract. Recent studies have shown that surface ozone (O3) concentrations over central eastern China (CEC) have increased significantly during the past decade. We quantified the effects of changes in meteorological conditions and O3 precursor emissions on surface O3 levels over CEC between July 2003 and July 2015 using the GEOS-Chem model. The simulated monthly mean maximum daily 8 h average O3 concentration (MDA8 O3) in July increased by approximately 13.6 %, from 65.5±7.9 ppbv (2003) to 74.4±8.7 ppbv (2015), comparable to the observed results. The change in meteorology led to an increase in MDA8 O3 of 5.8±3.9 ppbv over the central part of CEC, in contrast to a decrease of about -0.8±3.5 ppbv over the eastern part of the region. In comparison, the MDA8 O3 over the central and eastern parts of CEC increased by 3.5±1.4 and 5.6±1.8 ppbv due to the increased emissions. The increase in averaged O3 in the CEC region resulting from the emission increase (4.0±1.9 ppbv) was higher than that caused by meteorological changes (3.1±4.9 ppbv) relative to the 2003 standard simulation, while the regions with larger O3 increases showed a higher sensitivity to meteorological conditions than to emission changes. Sensitivity tests indicate that increased levels of anthropogenic non-methane volatile organic compounds (NMVOCs) dominate the O3 increase over the eastern part of CEC, and anthropogenic nitrogen oxides (NOx) mainly increase MDA8 O3 over the central and western parts and decrease O3 in a few urban areas in the eastern part. Budget analysis showed that net photochemical production and meteorological conditions (transport in particular) are two important factors that influence O3 levels over the CEC. The results of this study suggest a need to further assess the effectiveness of control strategies for O3 pollution in the context of regional meteorology and anthropogenic emission changes.


Author(s):  
Zhujun Dai ◽  
Duanyang Liu ◽  
Kun Yu ◽  
Lu Cao ◽  
Youshan Jiang

Steady meteorological conditions are important external factors affecting air pollution. In order to analyze how adverse meteorological variables affect air pollution, surface synoptic situation patterns and meteorological conditions during heavy pollution episodes are discussed. The results showed that there were 78 RPHPDs (regional PM2.5 pollution days) in Jiangsu, with a decreasing trend year by year. Winter had the most stable meteorological conditions, thus most RPHPDs appeared in winter, followed by autumn and summer, with the least days in spring. RPHPDs were classified into three patterns, respectively, as equalized pressure (EQP), advancing edge of a cold front (ACF) and inverted trough of low pressure (INT) according to the SLP (sea level pressure). RPHPDs under EQP were the most (51%), followed by ACF (37%); INT was the minimum (12%). Using statistical methods and meteorological condition data on RPHPDs from 2013 to 2017 to deduce the thresholds and 2018 as an independent dataset to validate the proposed thresholds, the threshold values of meteorological elements are summarized as follows. The probability of RPHPDs without rain was above 92% with the daily and hourly precipitation of all RPHPDs below 2.1 mm and 0.8 mm. Wind speed, RHs, inversion intensity(ITI), height difference in the temperature inversion(ITK), the lower height of temperature inversion (LHTI) and mixed-layer height (MLH) in terms of 25%–75% high probability range were respectively within 0.5–3.6 m s−1, 55%–92%, 0.7–4.0 °C 100 m −1, 42–576 m, 3–570 m, 200–1200 m. Two conditions should be considered: whether the pattern was EQP, ACF or INT and whether the eight meteorological elements are within the thresholds. If both criteria are met, PM2.5 particles tend to accumulate and air pollution diffusion conditions are poor. Unfavorable meteorological conditions are the necessary, but not sufficient condition for RPHPDs.


2012 ◽  
Vol 51 ◽  
pp. 11-20 ◽  
Author(s):  
Yang Zhou ◽  
Likun Xue ◽  
Tao Wang ◽  
Xiaomei Gao ◽  
Zhe Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document