scholarly journals Mass burning rate of premixed stretched flames: integral analysis versus large-activation-energy asymptotics

2007 ◽  
Vol 62 (1) ◽  
pp. 67-84 ◽  
Author(s):  
L. P. H. de Goey ◽  
J. H. M. ten Thije Boonkkamp
Author(s):  
Prabhakar Venkateswaran ◽  
Andrew D. Marshall ◽  
Jerry M. Seitzman ◽  
Tim C. Lieuwen

This work describes measurements and analysis of the turbulent consumption speeds, ST,GC, of H2/CO fuel blends. We report measurements of ST,GC at pressures and normalized turbulence intensities, u′rms/SL,0 up to 20 atm and 1800, respectively for a variety of H2/CO mixtures and equivalence ratios. In addition, we present correlations of these data using laminar burning velocities of highly stretched flames, SL,max, derived from quasi-steady leading points models. These analyses show that SL,max can be used to correlate data over a broad range of fuel compositions, but do not capture the pressure sensitivity of ST,GC. We suggest that these pressure effects are more fundamentally a manifestation of non-quasi-steady behavior in the mass burning rate at the flame leading points.


2017 ◽  
Vol 372 ◽  
pp. 11-20
Author(s):  
Renan Spilka Miranda ◽  
Maria Luiza Sperb Indrusiak ◽  
Felipe Roman Centeno

With the increasing demand for energy and fuels in Brazil, the storage of liquid fuels in multiple tanks is becoming much more usual, posing challenges from the point of view of fire safety. To study this type of phenomenon and to evaluate its possible causes, detecting failures such as ones in design and erection of storage systems or in detection and protection equipment, numerical simulations are performed based on real data. This work presents numerical simulations of a small-scale tank for gasoline storage, based on an experimental study reported in literature. The present research shows results related to temperature in the region adjacent to the tank on fire, fuel mass burning rate, heat release rate and average flame height. Comparisons are made between numerical and experimental results, as well as with available literature results for similar conditions. In addition to gasoline type C (which has anhydrous ethanol in its composition), also gasoline type A (anhydrous ethanol free) is considered. The results obtained for simulations with gasoline type A presented better agreement with literature data than those for gasoline type C, the differences being due to the variable composition of the type C fuel. For example, the reported fuel mass burning rate for gasoline in literature is 0.045 kg/(m2∙s), while the present simulations provided values of 0.038 kg/(m2∙s) for type C and 0.047 kg/(m2∙s) for type A.


1999 ◽  
Vol 118 (4) ◽  
pp. 633-650
Author(s):  
K.N.C. Bray ◽  
Michel Champion ◽  
Paul A. Libby

2021 ◽  
Vol 7 ◽  
Author(s):  
Juan J. Cruz ◽  
Ignacio Verdugo ◽  
Nicolás Gutiérrez-Cáceres ◽  
Felipe Escudero ◽  
Rodrigo Demarco ◽  
...  

The main characteristics of pool fire flames are flame height, air entrainment, pulsation of the flame, formation and properties of soot particles, mass burning rate, radiation feedback to the pool surface, and the amount of pollutants including soot released to the environment. In this type of buoyancy controlled flames, the soot content produced and their subsequent thermal radiation feedback to the pool surface are key to determine the self-sustainability of the flame, their mass burning rate and the heat release rate. The accurate characterization of these flames is an involved task, specially for modelers due to the difficulty of imposing adequate boundary conditions. For this reason, efforts are being made to design experimental campaigns with well-controlled conditions for their reliable repeatability, reproducibility and replicability. In this work, we characterized the production of soot in a surrogate pool fire. This is emulated by a bench-scale porous burner fueled with pure ethylene burning in still air. The flame stability was characterized with high temporal and spatial resolution by using a CMOS camera and a fast photodiode. The results show that the flame exhibit a time-varying propagation behavior with a periodic separation of the reactive zone. Soot volume fraction distributions were measured at nine locations along the flame centerline from 20 to 100 mm above the burner exit using the auto-compensating laser-induced incandescence (AC-LII) technique. The mean, standard deviation and probability density function of soot volume fraction were determined. Soot volume fraction presents an increasing tendency with the height above the burner, in spite of a local decrease at 90 mm which is approximately the position separating the lower and attached portion of the flame from the higher more intermittent one. The results of this work provide a valuable data set for validating soot production models in pool fire configurations.


1961 ◽  
Vol 64 (12) ◽  
pp. 2145-2148
Author(s):  
Takeshi Sakai ◽  
Tadao Hinohara ◽  
Jun-ichi Tatsuta

Author(s):  
Changfa Tao ◽  
Xishi Wang ◽  
Xin Cai

In order to study the effects of low atmospheric pressure conditions on combustion characteristics of liquid pool fires, a 1.0m×1.0m×1.0m airtight steel box was constructed and used for altering the ambient pressure with a vacuum pump. Gasoline, diesel oil and n-heptane were tested as the liquid fuels. The mass burning rate, flame pulsation frequency and flame local temperature history of the small scale pool fires were experimentally determined. The results show that the mass burning rate, flame pulsation frequency decrease with the decrease of ambient pressure, while the pulsating intensity is strengthened slightly for the n-heptane flame and weakened for the gasoline flame. It is also shown that the high temperature area of the flame moves upward with the decrease of ambient pressure.


Sign in / Sign up

Export Citation Format

Share Document