scholarly journals Mapping large-scale-structure evolution over cosmic times

Author(s):  
Marta B. Silva ◽  
Ely D. Kovetz ◽  
Garrett K. Keating ◽  
Azadeh Moradinezhad Dizgah ◽  
Matthieu Bethermin ◽  
...  

AbstractThis paper outlines the science case for line-intensity mapping with a space-borne instrument targeting the sub-millimeter (microwaves) to the far-infrared (FIR) wavelength range. Our goal is to observe and characterize the large-scale structure in the Universe from present times to the high redshift Epoch of Reionization. This is essential to constrain the cosmology of our Universe and form a better understanding of various mechanisms that drive galaxy formation and evolution. The proposed frequency range would make it possible to probe important metal cooling lines such as [CII] up to very high redshift as well as a large number of rotational lines of the CO molecule. These can be used to trace molecular gas and dust evolution and constrain the buildup in both the cosmic star formation rate density and the cosmic infrared background (CIB). Moreover, surveys at the highest frequencies will detect FIR lines which are used as diagnostics of galaxies and AGN. Tomography of these lines over a wide redshift range will enable invaluable measurements of the cosmic expansion history at epochs inaccessible to other methods, competitive constraints on the parameters of the standard model of cosmology, and numerous tests of dark matter, dark energy, modified gravity and inflation. To reach these goals, large-scale structure must be mapped over a wide range in frequency to trace its time evolution and the surveyed area needs to be very large to beat cosmic variance. Only a space-borne mission can properly meet these requirements.

1998 ◽  
Vol 11 (1) ◽  
pp. 492-492
Author(s):  
D. MacCagni ◽  
O. Le Fèvre ◽  
G. Vettolani ◽  
D. Mancini ◽  
J.P. Picat ◽  
...  

Large and deep spectroscopic samples of galaxies are essential to study galaxies and large scale structure evolution out to look-back times ~ 10% the current age of the vmiverse. Keeping this scientific and observational goal in mind, we designed and are presently building two wide-field imaging spectrographs to be installed at the Nasmyth foci of the ESO-VLT Unit Telescopes 3 and 4.


2019 ◽  
Vol 485 (4) ◽  
pp. 5059-5072 ◽  
Author(s):  
Phoebe Upton Sanderbeck ◽  
Vid Iršič ◽  
Matthew McQuinn ◽  
Avery Meiksin

ABSTRACT Spatial fluctuations in ultraviolet backgrounds can subtly modulate the distribution of extragalactic sources, a potential signal and systematic for large-scale structure surveys. While this modulation has been shown to be significant for 3D Ly α forest surveys, its relevance for other large-scale structure probes has been hardly explored, despite being the only astrophysical process that likely can affect clustering measurements on the scales of ≳Mpc. We estimate that the background fluctuations, modulating the amount of H i, have a fractional effect of (0.03–0.3) × (k/[10−2 Mpc−1])−1 on the power spectrum of 21 cm intensity maps at z = 1–3. We find a smaller effect for H α and Ly α intensity mapping surveys of (0.001–0.1) × (k/[10−2 Mpc−1])−1 and even smaller effect for more traditional surveys that correlate the positions of individual H α or Ly α emitters. We also estimate the effect of backgrounds on low-redshift galaxy surveys in general based on a simple model in which background fluctuations modulate the rate halo gas cools, modulating star formation: We estimate a maximum fractional effect on the power of ∼0.01 (k/[10−2 Mpc−1])−1 at z = 1. We compare sizes of these imprints to cosmological parameter benchmarks for the next generation of redshift surveys: We find that ionizing backgrounds could result in a bias on the squeezed triangle non-Gaussianity parameter fNL that can be larger than unity for power spectrum measurements with a SPHEREx-like galaxy survey, and typical values of intensity bias. Marginalizing over a shape of the form k−1PL, where PL is the linear matter power spectrum, removes much of this bias at the cost of ${\approx } 40{{\ \rm per\ cent}}$ larger statistical errors.


1988 ◽  
Vol 130 ◽  
pp. 293-300
Author(s):  
A.G. Doroshkevich ◽  
A.A. Klypin ◽  
M.U. Khlopov

Processes of the formation and the evolution of the large-scale structure are discussed in the framework of unstable dark matter models. Six numerical models are presented. The projected distribution of simulated galaxies on the sky, wedge diagrams, correlation functions and the mean linear scale of voids are presented. Physical background of the hypothesis of unstable particles and possible observational tests are discussed. The level of the microwave background fluctuations is estimated analytically. Special attention is given to late stage of supercluster evolution and galaxy formation.


2019 ◽  
Vol 630 ◽  
pp. A151 ◽  
Author(s):  
Natalia Porqueres ◽  
Jens Jasche ◽  
Guilhem Lavaux ◽  
Torsten Enßlin

One of the major science goals over the coming decade is to test fundamental physics with probes of the cosmic large-scale structure out to high redshift. Here we present a fully Bayesian approach to infer the three-dimensional cosmic matter distribution and its dynamics at z >  2 from observations of the Lyman-α forest. We demonstrate that the method recovers the unbiased mass distribution and the correct matter power spectrum at all scales. Our method infers the three-dimensional density field from a set of one-dimensional spectra, interpolating the information between the lines of sight. We show that our algorithm provides unbiased mass profiles of clusters, becoming an alternative for estimating cluster masses complementary to weak lensing or X-ray observations. The algorithm employs a Hamiltonian Monte Carlo method to generate realizations of initial and evolved density fields and the three-dimensional large-scale flow, revealing the cosmic dynamics at high redshift. The method correctly handles multi-modal parameter distributions, which allow constraining the physics of the intergalactic medium with high accuracy. We performed several tests using realistic simulated quasar spectra to test and validate our method. Our results show that detailed and physically plausible inference of three-dimensional large-scale structures at high redshift has become feasible.


2014 ◽  
Vol 793 (1) ◽  
pp. 58 ◽  
Author(s):  
Xin Wang ◽  
Alex Szalay ◽  
Miguel A. Aragón-Calvo ◽  
Mark C. Neyrinck ◽  
Gregory L. Eyink

Sign in / Sign up

Export Citation Format

Share Document