modal parameter
Recently Published Documents


TOTAL DOCUMENTS

616
(FIVE YEARS 119)

H-INDEX

28
(FIVE YEARS 5)

Author(s):  
Nicoleta Gillich ◽  
Cristian Tufisi ◽  
Christian Sacarea ◽  
Catalin V Rusu ◽  
Gilbert-Rainer Gillich ◽  
...  

Damage detection based on modal parameter changes becomes popular in the last decades. Nowadays are available robust and reliable mathematical relations to predict the natural frequency changes if damage parameters are known. Using these relations, it is possible to create databases containing a large variety of damage scenarios. Damage can be thus assessed by applying an inverse method. The problem is the complexity of the database, especially for structures with more cracks. In this paper, we propose two machine learning methods, namely the random forest (RF) and the artificial neural network (ANN) as search tools. The databases we developed contain damage scenarios for a prismatic cantilever beam with one crack and ideal and non-ideal boundary conditions. The crack assessment is made in two steps. First, a coarse damage location is found from the networks trained for scenarios comprising the whole beam. Afterward, the assessment is made involving a particular network trained for the segment of the beam on which the crack is previously found. Using the two machine learning methods, we succeed to estimate the crack location and severity with high accuracy for both simulation and laboratory experiments. Regarding the location of the crack, which is the main goal of the practitioners, the errors are less than 0.6%. Based on these achievements, we concluded that the damage assessment we propose, in conjunction with the machine learning methods, is robust and reliable.


2021 ◽  
Vol 11 (23) ◽  
pp. 11432
Author(s):  
Xiangying Guo ◽  
Changkun Li ◽  
Zhong Luo ◽  
Dongxing Cao

A method of modal parameter identification of structures using reconstructed displacements was proposed in the present research. The proposed method was developed based on the stochastic subspace identification (SSI) approach and used reconstructed displacements of measured accelerations as inputs. These reconstructed displacements suppressed the high-frequency component of measured acceleration data. Therefore, in comparison to the acceleration-based modal analysis, the operational modal analysis obtained more reliable and stable identification parameters from displacements regardless of the model order. However, due to the difficulty of displacement measurement, different types of noise interferences occurred when an acceleration sensor was used, causing a trend term drift error in the integral displacement. A moving average low-frequency attenuation frequency-domain integral was used to reconstruct displacements, and the moving time window was used in combination with the SSI method to identify the structural modal parameters. First, measured accelerations were used to estimate displacements. Due to the interference of noise and the influence of initial conditions, the integral displacement inevitably had a drift term. The moving average method was then used in combination with a filter to effectively eliminate the random fluctuation interference in measurement data and reduce the influence of random errors. Real displacement results of a structure were obtained through multiple smoothing, filtering, and integration. Finally, using reconstructed displacements as inputs, the improved SSI method was employed to identify the modal parameters of the structure.


2021 ◽  
Author(s):  
Samsul Arefin ◽  
Didier Dumur ◽  
Aurelien Hot ◽  
Alain Bettachioli ◽  
Sihem Tebbani ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Fugen Liu ◽  
Tenghao Zhang ◽  
Daniyal M. Alghazzawi ◽  
Nympha Rita Joseph

Abstract A bridge structure is one of the most expressive forms of art design. The artistic expression of bridge structure combines different concepts of structural design and architectural art design. Finite element differential equations are widely used in bridge art design theory and based on these features, the paper adopts the bridge modal parameter recognition algorithm and uses the finite element model to modify and realise the bridge's artistic design. The simulation results show the feasibility of the author's attempt to use the finite element differential equation as the bridge structure art design carrier. After the finite element differential equation modelling, the bridge art structure correction is highly consistent with the experimental results.


Author(s):  
Yongpeng Luo ◽  
Yuangui Liu ◽  
Jianping Han ◽  
Jingliang Liu

This study proposes an algorithm for autonomous modal estimation to automatically eliminate false modes and quantify the uncertainty caused by the clustering algorithm and ambient factors. This algorithm belongs to the stochastic subspace identification (SSI) techniques and is based on the Block-Bootstrap and multi-stage clustering analysis. First, the Block-Bootstrap is introduced to decompose the response signal of the structure into M blocks of data. The covariance-driven stochastic subspace identification (SSI-Cov) method is used to process a random sample of data and obtain the corresponding M stabilization diagrams. In addition, the hierarchical clustering method is adopted to carry out the secondary clustering of the picked stable axis according to the defined distance threshold. Then, false modes are eliminated according to the proposed true and false modal discrimination index ( MDI). Finally, the above steps are repeated B times, and MDI is used to modify the initial modal parameters of group B. The mean value of elements in the cluster is taken as the recognition result of modal parameters, and the standard deviation is used to measure the accuracy of the recognition result. The numerical simulation results and the modal parameter identification of the Jing-yuan Yellow River Bridge show that, for identifying true and false modals, the proposed modal discrimination index is more effective than the threshold value of the traditional index. Also, it was found that the proposed method can eliminate the uncertainty introduced in the clustering process. In addition, this method can remove the influence of ambient noises, and it can improve the identification accuracy. It will be shown that this method has better anti-noise performance.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012021
Author(s):  
Menghui Xuan ◽  
Sixia Zhao ◽  
Mengnan Liu ◽  
Liyou Xu ◽  
Xiaoliang Chen

Abstract Aiming at the problems of low assembly accuracy and difficult to detect assembly quality of combine, a method of combine assembly quality detection based on sparrow search algorithm (SSA) optimized variational mode decomposition (VMD) and particle swarm optimization (PSO) optimized least squares support vector machine (LSSVM) was proposed, Firstly, the sparrow search algorithm is used to obtain the optimal VMD decomposition modal parameter K and penalty factor α, then the combined vibration signal of combine harvester is decomposed into intrinsic modal components of different center frequencies by using the best parameter combination [K, α]. Finally, the feature vector is used as the input of LSSVM classifier to classify different fault features. The analysis results show that the classification accuracy of SSA-VMD joint feature extraction method is 99.5%, which is 17.5% and 9.5% higher than ensemble empirical mode decomposition (EEMD) and fixed parameter VMD, which verifies the superiority of this method in the detection of combine assembly quality.


2021 ◽  
Vol 11 (21) ◽  
pp. 9963
Author(s):  
Rafael A. Figueroa-Díaz ◽  
Pedro Cruz-Alcantar ◽  
Antonio de J. Balvantín-García

In the area of modal balancing, it is essential to identify the vibration modes to be balanced in order to obtain the different modal parameters that will allow knowing the correction weight and its position in the balance planes. However, in some cases, a single mode is apparently observed in the polar response diagrams used for this process, which actually contains at least two modes and which, when added vectorially, shows only one apparent mode. In these cases, in addition to the intrinsic errors when using a modal parameter extraction tool, there will be errors in determining the correction weight for the modes, as well as for the placement angle. In this work, an identification methodology is presented which, through the use of coordinate transformation and a modal parameter extraction tool, allows identifying characteristic patterns of close modes in frequency and which, when applied in the study of a system in the field, offers robustness and applicability.


2021 ◽  
Author(s):  
Dawid Augustyn ◽  
Martin Dalgaard Ulriksen

The present paper provides a model updating application study concerning the jacket substructure of an o?shore wind turbine. Theupdating is resolved in a sensitivity-based parameter estimation setting, where a cost function expressing the discrepancy betweenexperimentally obtained modal parameters and model-predicted ones is minimized. The modal parameters of the physical systemare estimated through stochastic subspace identification (SSI) applied to vibration data captured for idling and operational states ofthe turbine. From a theoretical outset, the identification approach relies on the system being linear and time-invariant (LTI) and theinput white noise random processes; criteria which are violated in this application due to sources such as operational variability, theturbine controller, and non-linear damping. Consequently, particular attention is given to assess the feasibility of extracting modalparameters through SSI under the prevailing conditions and subsequently using these parameters for model updating. On this basis,it is deemed necessary to disregard the operational turbine states—which severely promote non-linear and time-variant structuralbehaviour and, as such, imprecise parameter estimation results—and conduct the model updating based on modal parametersextracted solely from the idling state. The uncertainties associated with the modal parameter estimates and the model parameters tobe updated are outlined and included in the updating procedure using weighting matrices in the sensitivity-based formulation. Byconducting the model updating based on in-situ data harvested from the jacket substructure during idling conditions, the maximumeigenfrequency deviation between the experimental estimates and the model-predicted ones is reduced from 30% to 1%.


Sign in / Sign up

Export Citation Format

Share Document