Fire Detection Based on Fractal Analysis and Spatio-Temporal Features

2021 ◽  
Author(s):  
Monir Torabian ◽  
Hossein Pourghassem ◽  
Homayoun Mahdavi-Nasab
2021 ◽  
pp. 115472
Author(s):  
Parameshwaran Ramalingam ◽  
Lakshminarayanan Gopalakrishnan ◽  
Manikandan Ramachandran ◽  
Rizwan Patan

2016 ◽  
Vol 12 ◽  
pp. P1115-P1115
Author(s):  
Vera Niederkofler ◽  
Christina Hoeller ◽  
Joerg Neddens ◽  
Ewald Auer ◽  
Heinrich Roemer ◽  
...  

2021 ◽  
Vol 12 (6) ◽  
pp. 1-23
Author(s):  
Shuo Tao ◽  
Jingang Jiang ◽  
Defu Lian ◽  
Kai Zheng ◽  
Enhong Chen

Mobility prediction plays an important role in a wide range of location-based applications and services. However, there are three problems in the existing literature: (1) explicit high-order interactions of spatio-temporal features are not systemically modeled; (2) most existing algorithms place attention mechanisms on top of recurrent network, so they can not allow for full parallelism and are inferior to self-attention for capturing long-range dependence; (3) most literature does not make good use of long-term historical information and do not effectively model the long-term periodicity of users. To this end, we propose MoveNet and RLMoveNet. MoveNet is a self-attention-based sequential model, predicting each user’s next destination based on her most recent visits and historical trajectory. MoveNet first introduces a cross-based learning framework for modeling feature interactions. With self-attention on both the most recent visits and historical trajectory, MoveNet can use an attention mechanism to capture the user’s long-term regularity in a more efficient way. Based on MoveNet, to model long-term periodicity more effectively, we add the reinforcement learning layer and named RLMoveNet. RLMoveNet regards the human mobility prediction as a reinforcement learning problem, using the reinforcement learning layer as the regularization part to drive the model to pay attention to the behavior with periodic actions, which can help us make the algorithm more effective. We evaluate both of them with three real-world mobility datasets. MoveNet outperforms the state-of-the-art mobility predictor by around 10% in terms of accuracy, and simultaneously achieves faster convergence and over 4x training speedup. Moreover, RLMoveNet achieves higher prediction accuracy than MoveNet, which proves that modeling periodicity explicitly from the perspective of reinforcement learning is more effective.


2020 ◽  
Vol 17 (5) ◽  
pp. 4747-4772
Author(s):  
Faiz Ul Islam ◽  
◽  
Guangjie Liu ◽  
Weiwei Liu ◽  

2021 ◽  
Author(s):  
Sundaram Muthu ◽  
Ruwan Tennakoon ◽  
Reza Hoseinnezhad ◽  
Alireza Bab-Hadiashar

<div>This paper presents a new approach to solve unsupervised video object segmentation~(UVOS) problem (called TMNet). The UVOS is still a challenging problem as prior methods suffer from issues like generalization errors to segment multiple objects in unseen test videos (category agnostic), over reliance on inaccurate optic flow, and problem towards capturing fine details at object boundaries. These issues make the UVOS, particularly in presence of multiple objects, an ill-defined problem. Our focus is to constrain the problem and improve the segmentation results by inclusion of multiple available cues such as appearance, motion, image edge, flow edge and tracking information through neural attention. To solve the challenging category agnostic multiple object UVOS, our model is designed to predict neighbourhood affinities for being part of the same object and cluster those to obtain accurate segmentation. To achieve multi cue based neural attention, we designed a Temporal Motion Attention module, as part of our segmentation framework, to learn the spatio-temporal features. To refine and improve the accuracy of object segmentation boundaries, an edge refinement module (using image and optic flow edges) and a geometry based loss function are incorporated. The overall framework is capable of segmenting and finding accurate objects' boundaries without any heuristic post processing. This enables the method to be used for unseen videos. Experimental results on challenging DAVIS16 and multi object DAVIS17 datasets shows that our proposed TMNet performs favourably compared to the state-of-the-art methods without post processing.</div>


Sign in / Sign up

Export Citation Format

Share Document