Repeatability of burst swimming performance in medaka (Oryzias latipes)

2019 ◽  
Vol 45 (4) ◽  
pp. 1299-1307 ◽  
Author(s):  
Drake T. Hechter ◽  
Caleb T. Hasler
1998 ◽  
Vol 76 (4) ◽  
pp. 680-688 ◽  
Author(s):  
Christophe Garenc ◽  
Frederick G Silversides ◽  
Helga Guderley

Full-sib heritabilities of burst-swimming capacity and its enzymatic correlates were calculated in juvenile threespine sticklebacks, Gasterosteus aculeatus, from 25 families raised under constant laboratory conditions. Variation among families in burst-swimming performance, enzyme activities, body size, and condition of the juveniles was considerable. Estimates of full-sib heritabilities of absolute and relative burst-swimming performance decreased during ontogenesis, as they were higher for 2-month-old than for 3.6-month-old sticklebacks. This decline may reflect a decrease in the importance of paternal effects with age, as well as an increase in intrafamilial variability due to the existence of feeding or social hierarachies. Enzymatic correlates of burst-swimming performance measured in 3.6-month-old sticklebacks had higher full-sib heritabilities than burst-swimming performance itself, with the highest values found for cytochrome c oxidase, followed by lactate dehydrogenase and then phosphofructokinase and creatine phosphokinase. These results suggest that genetic factors may have a considerable influence upon burst-swimming performance and muscle metabolic capacities of juvenile threespine sticklebacks, but that this influence may be tempered by biotic interactions.


2003 ◽  
Vol 28 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Craig E. Franklin ◽  
Robbie S. Wilson ◽  
William Davison

1989 ◽  
Vol 143 (1) ◽  
pp. 195-210 ◽  
Author(s):  
STEPHEN D. ARCHER ◽  
IAN A. JOHNSTON

1. The kinematics of labriform and subcarangiform swimming have been investigated for juvenile (7–8 cm) and adult (27–30 cm) stages of the antarctic teleost Notothenia neglecta Nybelin at 1–2 °C 2. Upper threshold speeds using the pectoral fins alone (labriform swimming) were 0.8LS−1 in adult fish and 1.4Ls−1 in juveniles, where L is body length 3. In adult fish, steady subcarangiform swimming is only used at speeds of 3.6-5.4Ls−1 (tail-beat frequencies of 5.0-8.3Hz). Intermediate speeds involve unsteady swimming. In contrast, juvenile fish employ subcarangiform swimming at a range of intermediate velocities between the maximum labriform and burst speeds (2.3-8.4Ls−1 at tail-beat frequencies of 4.0-12.5 Hz). These differences in swimming behaviour are discussed in relation to changes in life-style and muscle fibre type composition between juvenile and adult fish 4. Burst swimming speeds in N. neglecta have been compared with equivalent data from temperate species. It seems likely that low temperature limits swimming performance in antarctic fish. This is more noticeable in juvenile stages, which normally have much higher tail-beat frequencies than adult fish


2012 ◽  
Vol 90 (3) ◽  
pp. 345-351 ◽  
Author(s):  
D. Deslauriers ◽  
J.D. Kieffer

Swimming performance and behaviour in fish has been shown to vary depending on the investigation method. In this study, an endurance swimming curve was generated for young-of-the-year shortnose sturgeon (Acipenser brevirostrum LeSueur, 1818) (~7 cm total length, ~2 g) and compared with values determined in a separate incremental swimming (critical swimming, Ucrit) test. Using video, tail-beat frequency (TBF) was quantified and compared for fish swimming under both swimming tests. From the endurance-curve analysis, it was found that sturgeon did not display a statistically significant burst swimming phase. Maximum sustainable swimming speed (calculated to be 18.00 cm·s–1) from the endurance curve occurred at ~80% of Ucrit (22.30 cm·s–1). TBF was similar at all speeds for both swimming tests, except at speeds approaching Ucrit, where fish displayed TBFs of 4.29 Hz for the endurance protocol and 2.26 Hz for the Ucrit protocol. TBF was more variable between individuals swimming at the same speed within the Ucrit compared with the endurance protocol. Finally, a significant negative correlation was found between TBF and Ucrit in individual fish, suggesting that station-holding may be an important energy saving strategy during swimming in this size class of sturgeon.


2002 ◽  
Vol 205 (8) ◽  
pp. 1145-1152 ◽  
Author(s):  
Robbie S. Wilson ◽  
Rob S. James ◽  
Raoul Van Damme

SUMMARYOne of the most interesting trade-offs within the vertebrate locomotor system is that between speed and endurance capacity. However, few studies have demonstrated a conflict between whole-animal speed and endurance within a vertebrate species. We investigated the existence of trade-offs between speed and endurance capacity at both the whole-muscle and whole-animal levels in post-metamorphs of the frog Xenopus laevis. The burst-swimming performance of 55 frogs was assessed using a high-speed digital camera, and their endurance capacity was measured in a constant-velocity swimming flume.The work-loop technique was used to assess maximum power production of whole peroneus muscles at a cycle frequency of 6 Hz, while fatigue-resistance was determined by recording the decrease in force and net power production during a set of continuous cycles at 2 Hz. We found no significant correlations between measures of burst swimming performance and endurance capacity, suggesting that there is no trade-off between these two measures of whole-animal performance. In contrast, there was a significant negative correlation between peak instantaneous power output of the muscles at 6 Hz and the fatigue-resistance of force production at 2 Hz (other correlations between power and fatigue were negative but non-significant). Thus, our data support the suggestion that a physiological conflict between maximum power output and fatigue resistance exists at the level of vertebrate muscles. The apparent incongruence between whole-muscle and whole-animal performance warrants further detailed investigation and may be related to factors influencing both whole-muscle and whole-animal performance measures.


Hydrobiologia ◽  
2019 ◽  
Vol 843 (1) ◽  
pp. 201-209
Author(s):  
Lu Cai ◽  
Peng Zhang ◽  
David Johnson ◽  
Ping Zhao ◽  
Yiqun Hou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document