swimming performance
Recently Published Documents


TOTAL DOCUMENTS

1407
(FIVE YEARS 372)

H-INDEX

69
(FIVE YEARS 7)

Aquaculture ◽  
2022 ◽  
Vol 548 ◽  
pp. 737560
Author(s):  
Sebastián Messina-Henríquez ◽  
Álvaro Aguirre ◽  
Katherina Brokordt ◽  
Héctor Flores ◽  
Marcia Oliva ◽  
...  

2022 ◽  
Vol 245 ◽  
pp. 110372
Author(s):  
Zhong Huang ◽  
Shugen Ma ◽  
Ziming Lin ◽  
Kaijia Zhu ◽  
Peng Wang ◽  
...  

Author(s):  
Qian Yin ◽  
Minghai Xia ◽  
Zirong Luo ◽  
Jianzhong Shang

In this paper, an amphibious robot with flexible undulating fins and self-adaptive climbing wheels are proposed for satisfying the needs of industrial applications. The structure of the climbing mechanism and undulating fin are firstly designed. Then, the adaptive obstacle climbing and the hydrodynamic characteristics are investigated through numerical simulations by using the Adams and Fluent, respectively. Finally, the experimental measurements of the land walking and underwater propulsion are studied. The numerical results illustrate that the amphibious robot could climb the vertical obstacle adaptively. In the underwater marching pattern, the underwater velocity could reach 1 m/s. In the rotating and yawing patterns, the angular velocity increases to the certain value while the rotating angle keeps increasing. The robot moves forward and turns around with the difference frequency of the undulating fins. The underwater propulsion and land-walking experiments show good swimming performance and the obstacle crossing ability of the amphibious robot, respectively, which verify the numerical simulation.


2022 ◽  
Vol 8 ◽  
Author(s):  
Fabian Schwab ◽  
Fabian Wiesemüller ◽  
Claudio Mucignat ◽  
Yong-Lae Park ◽  
Ivan Lunati ◽  
...  

Due to the difficulty of manipulating muscle activation in live, freely swimming fish, a thorough examination of the body kinematics, propulsive performance, and muscle activity patterns in fish during undulatory swimming motion has not been conducted. We propose to use soft robotic model animals as experimental platforms to address biomechanics questions and acquire understanding into subcarangiform fish swimming behavior. We extend previous research on a bio-inspired soft robotic fish equipped with two pneumatic actuators and soft strain sensors to investigate swimming performance in undulation frequencies between 0.3 and 0.7 Hz and flow rates ranging from 0 to 20 cms in a recirculating flow tank. We demonstrate the potential of eutectic gallium–indium (eGaIn) sensors to measure the lateral deflection of a robotic fish in real time, a controller that is able to keep a constant undulatory amplitude in varying flow conditions, as well as using Particle Image Velocimetry (PIV) to characterizing swimming performance across a range of flow speeds and give a qualitative measurement of thrust force exerted by the physical platform without the need of externally attached force sensors. A detailed wake structure was then analyzed with Dynamic Mode Decomposition (DMD) to highlight different wave modes present in the robot’s swimming motion and provide insights into the efficiency of the robotic swimmer. In the future, we anticipate 3D-PIV with DMD serving as a global framework for comparing the performance of diverse bio-inspired swimming robots against a variety of swimming animals.


2021 ◽  
Author(s):  
Jonathon Senefeld ◽  
Sandra Hunter ◽  
Doriane Lambelet Coleman ◽  
Michael J Joyner

There is current scientific and legal controversy about sports competition eligibility regulations for transgender athletes. To better understand and contextualize the effect of androgen-suppression treatment on swimming performance, we compared the gender-related differences in performance of a transgender swimmer who competed in both the male and female NCAA (collegiate) categories to the sex-related differences in performance of world and national class swimmers. These data demonstrate that the gender-related differences in middle distance freestyle performances of a transgender woman are smaller than the observed sex-related differences in performance of top athletes. Our analysis may be useful as a framework for regulators considering participation guidelines which promote fair competition for all athletes, whether cisgender or transgender.


Author(s):  
Andres Hagmayer ◽  
Martin J. Lankheet ◽  
Judith Bijsterbosch ◽  
Johan L. van Leeuwen ◽  
Bart J. A. Pollux

How pregnant mothers allocate limited resources to different biological functions such as maintenance, somatic growth, and reproduction can have profound implications for early life development and survival of offspring. Here we examined the effects of maternal food restriction during pregnancy on offspring in the matrotrophic (i.e. mother-nourishment throughout gestation) live-bearing fish species Phalloptychus januarius (Poeciliidae). We fed pregnant females either with a ‘low-food’ or ‘high-food’ ration for six weeks and quantified the consequences for offspring size and body fat at birth and one week after birth. We further measured fast-start escape performance of offspring at birth, as well as swimming kinematics during prey capture at zero, two, and seven days after birth. We found that the length of maternal food restriction during pregnancy negatively affected offspring dry mass and lean dry mass at birth, as well as body fat gain during the first week after birth. Moreover, it impacted the locomotor performance of offspring during prey capture at, and during the first week after, birth. We did not observe an effect of food restriction on fast-start escape performance of offspring. Our study suggests that matrotrophic poeciliid fish are maladapted to unpredictably fluctuating resource environments, because sudden reductions in maternal food availability during pregnancy result in smaller offspring with slower postnatal body fat gain and an inhibition of postnatal improving swimming skills during feeding, potentially leading to lower competitive abilities after birth.


Machines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 17
Author(s):  
Yinxiang Bao ◽  
Hongbin Fang ◽  
Jian Xu

Swimming is a kind of complex locomotion that involves the interaction between the human body and the water. Here, to examine the effects of currents on the performance of freestyle and breaststroke swimming, a multi-body Newton-Euler dynamic model of human swimming is developed. The model consists of 18 rigid segments, whose shapes and geometries are determined based on the measured data from 3D scanning, and the fluid drags in consideration of the current are modeled. By establishing the interrelations between the fluid moments and the swimming kinematics, the underlying mechanism that triggers the turning of the human body is uncovered. Through systematic parametric analyses, the effects of currents on swimming performance (including the human body orientation, swimming direction, swimming speed, and propulsive efficiency) are elucidated. It reveals that the current would turn the human body counterclockwise in freestyle swimming, while clockwise in breaststroke swimming (which means that from the top view, the human trunk, i.e., the vector pointing from the bottom of feet to the top of the head, rotates counterclockwise or clockwise). Moreover, for both strokes, there exists a critical current condition, beyond which, the absolute swimming direction will be reversed. This work provides a wealth of fundamental insights into the swimming dynamics in the presence of currents, and the proposed modeling and analysis framework is promising to be used for analyzing the human swimming behavior in open water.


Sign in / Sign up

Export Citation Format

Share Document