Fish Physiology and Biochemistry
Latest Publications


TOTAL DOCUMENTS

2958
(FIVE YEARS 440)

H-INDEX

71
(FIVE YEARS 7)

Published By Springer-Verlag

1573-5168, 0920-1742

Author(s):  
Xuhui Zhang ◽  
Zhiyuan Sun ◽  
Yuheng Wang ◽  
Yindi Cao ◽  
Guibin Wang ◽  
...  

Abstract This study investigated the effects of dietary Flos populi extract (FPE) on the growth, antioxidation capability, innate immune response, and disease resistance in gibel carp. A total of 480 fish were fed with five different diets containing 0, 0.5, 1.0, 1.5, or 2.0 g kg−1 FPE (designated as control, D0.5, D1.0, D1.5, or D2.0 groups) for 45 days. The fish were challenged with A. hydrophila after the feeding trial. Compared with the control, the feed efficiency (FE), weight gain (WG), final body weight (FBW), and specific growth rate (SGR) were significantly improved in groups D1.0 and D1.5. Dietary FPE significantly increased serum superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities, as well as glutathione (GSH) content. The contents of protein carbonyl (PCC) and malondialdehyde (MDA) in serum decreased significantly. Additionally, FPE supplementation in diets resulted in significant improvement in serum lysozyme (LZM) and myeloperoxidase (MPO) activities, as well as immunoglobulin M (IgM) and complement 3 (C3) concentrations. The hepatic antioxidant enzymes (CAT and SOD) activities increased, whereas content of MDA decreased in fish treated with dietary FPE than those of control both pre- and post-challenged. After 12 h-challenge, an obvious downregulation of hepatic Kelch-like-ECH-associated protein 1 (Keap1), splenic tumor necrosis factor-α (TNF-α), interleukin (IL)-8, IL-1β, and toll-like receptor 2 (TLR2) mRNA levels was observed in fish treated with dietary FPE, whereas hepatic Nrf2 transcription level was upregulated compared to the control. Furthermore, compared to group D0.5, higher relative percent survival (RPS) was observed in gibel carp fed dietary 1.0–2.0 g/kg FPE. Our results reveal that FPE supplemented diet has a stimulatory effect on antioxidant capacity and nonspecific immune response, along with improved growth performance and enhanced resistance against A. hydrophila infection in juvenile gibel carp.


Author(s):  
Pedro F. Almaida-Pagan ◽  
Alejandro Lucas-Sanchez ◽  
Antonio Martinez-Nicolas ◽  
Eva Terzibasi ◽  
Maria Angeles Rol de Lama ◽  
...  

AbstractThe longevity-homeoviscous adaptation (LHA) theory of ageing states that lipid composition of cell membranes is linked to metabolic rate and lifespan, which has been widely shown in mammals and birds but not sufficiently in fish. In this study, two species of the genus Amphiprion (Amphiprion percula and Amphiprion clarkii, with estimated maximum lifespan potentials [MLSP] of 30 and 9–16 years, respectively) and the damselfish Chromis viridis (estimated MLSP of 1–2 years) were chosen to test the LHA theory of ageing in a potential model of exceptional longevity. Brain, livers and samples of skeletal muscle were collected for lipid analyses and integral part in the computation of membrane peroxidation indexes (PIn) from phospholipid (PL) fractions and PL fatty acid composition. When only the two Amphiprion species were compared, results pointed to the existence of a negative correlation between membrane PIn value and maximum lifespan, well in line with the predictions from the LHA theory of ageing. Nevertheless, contradictory data were obtained when the two Amphiprion species were compared to the shorter-lived C. viridis. These results along with those obtained in previous studies on fish denote that the magnitude (and sometimes the direction) of the differences observed in membrane lipid composition and peroxidation index with MLSP cannot explain alone the diversity in longevity found among fishes.


Author(s):  
Ahmed I. Mehrim ◽  
Mohamed M. Refaey ◽  
Mahmoud A. E. Hassan ◽  
Mohamed A. Zaki ◽  
Osama A. Zenhom

Sign in / Sign up

Export Citation Format

Share Document