Foundation of Quantum Mechanics: Once Again

2018 ◽  
Vol 24 (2) ◽  
pp. 375-389
Author(s):  
Paul Drechsel
Author(s):  
Angelo Bassi

Quantum Mechanics is one of the most successful theories of nature. It accounts for all known properties of matter and light, and it does so with an unprecedented level of accuracy. On top of this, it generated many new technologies that now are part of daily life. In many ways, it can be said that we live in a quantum world. Yet, quantum theory is subject to an intense debate about its meaning as a theory of nature, which started from the very beginning and has never ended. The essence was captured by Schrödinger with the cat paradox: why do cats behave classically instead of being quantum like the one imagined by Schrödinger? Answering this question digs deep into the foundation of quantum mechanics. A possible answer is Dynamical Collapse Theories. The fundamental assumption is that the Schrödinger equation, which is supposed to govern all quantum phenomena (at the non-relativistic level) is only approximately correct. It is an approximation of a nonlinear and stochastic dynamics, according to which the wave functions of microscopic objects can be in a superposition of different states because the nonlinear effects are negligible, while those of macroscopic objects are always very well localized in space because the nonlinear effects dominate for increasingly massive systems. Then, microscopic systems behave quantum mechanically, while macroscopic ones such as Schrödinger’s cat behave classically simply because the (newly postulated) laws of nature say so. By changing the dynamics, collapse theories make predictions that are different from quantum-mechanical predictions. Then it becomes interesting to test the various collapse models that have been proposed. Experimental effort is increasing worldwide, so far limiting values of the theory’s parameters quantifying the collapse, since no collapse signal was detected, but possibly in the future finding such a signal and opening up a window beyond quantum theory.


Author(s):  
M. Suhail Zubairy

Heisenberg’s uncertainty relation and Bohr’s principle of complementarity form the foundations of quantum mechanics. If these are violated then the edifice of quantum mechanics can come crashing down. In this chapter, it is shown how cloning or perfect copying of a quantum state can potentially lead to a violation of these sacred principles. A no-cloning theorem is proven showing that the cloning of an arbitrary quantum state is not allowed. The foundation of quantum mechanics is therefore protected. It is also shown how quantum cloning can lead to superluminal communication. It is also discussed that, if making a perfect copy of a quantum state is forbidden, how best a copy of a state can be made.


2009 ◽  
Vol 24 (06) ◽  
pp. 1175-1183 ◽  
Author(s):  
A. NICOLAIDIS

The unification of quantum mechanics and general relativity remains the primary goal of theoretical physics, with string theory appearing as the only plausible unifying scheme. In the present work, in a search of the conceptual foundations of string theory, we analyze the relational logic developed by C. S. Peirce in the late 19th century. The Peircean logic has the mathematical structure of a category with the relation Rij among two individual terms Si and Sj, serving as an arrow (or morphism). We introduce a realization of the corresponding categorical algebra of compositions, which naturally gives rise to the fundamental quantum laws, thus indicating category theory as the foundation of quantum mechanics. The same relational algebra generates a number of group structures, among them W∞. The group W∞ is embodied and realized by the matrix models, themselves closely linked with string theory. It is suggested that relational logic and in general category theory may provide a new paradigm, within which to develop modern physical theories.


Sign in / Sign up

Export Citation Format

Share Document