Philosophy of Quantum Mechanics: Dynamical Collapse Theories

Author(s):  
Angelo Bassi

Quantum Mechanics is one of the most successful theories of nature. It accounts for all known properties of matter and light, and it does so with an unprecedented level of accuracy. On top of this, it generated many new technologies that now are part of daily life. In many ways, it can be said that we live in a quantum world. Yet, quantum theory is subject to an intense debate about its meaning as a theory of nature, which started from the very beginning and has never ended. The essence was captured by Schrödinger with the cat paradox: why do cats behave classically instead of being quantum like the one imagined by Schrödinger? Answering this question digs deep into the foundation of quantum mechanics. A possible answer is Dynamical Collapse Theories. The fundamental assumption is that the Schrödinger equation, which is supposed to govern all quantum phenomena (at the non-relativistic level) is only approximately correct. It is an approximation of a nonlinear and stochastic dynamics, according to which the wave functions of microscopic objects can be in a superposition of different states because the nonlinear effects are negligible, while those of macroscopic objects are always very well localized in space because the nonlinear effects dominate for increasingly massive systems. Then, microscopic systems behave quantum mechanically, while macroscopic ones such as Schrödinger’s cat behave classically simply because the (newly postulated) laws of nature say so. By changing the dynamics, collapse theories make predictions that are different from quantum-mechanical predictions. Then it becomes interesting to test the various collapse models that have been proposed. Experimental effort is increasing worldwide, so far limiting values of the theory’s parameters quantifying the collapse, since no collapse signal was detected, but possibly in the future finding such a signal and opening up a window beyond quantum theory.

Author(s):  
Frank S. Levin

Surfing the Quantum World bridges the gap between in-depth textbooks and typical popular science books on quantum ideas and phenomena. Among its significant features is the description of a host of mind-bending phenomena, such as a quantum object being in two places at once or a certain minus sign being the most consequential in the universe. Much of its first part is historical, starting with the ancient Greeks and their concepts of light, and ending with the creation of quantum mechanics. The second part begins by applying quantum mechanics and its probability nature to a pedagogical system, the one-dimensional box, an analog of which is a musical-instrument string. This is followed by a gentle introduction to the fundamental principles of quantum theory, whose core concepts and symbolic representations are the foundation for most of the subsequent chapters. For instance, it is shown how quantum theory explains the properties of the hydrogen atom and, via quantum spin and Pauli’s Exclusion Principle, how it accounts for the structure of the periodic table. White dwarf and neutron stars are seen to be gigantic quantum objects, while the maximum height of mountains is shown to have a quantum basis. Among the many other topics considered are a variety of interference phenomena, those that display the wave properties of particles like electrons and photons, and even of large molecules. The book concludes with a wide-ranging discussion of interpretational and philosophic issues, introduced in Chapters 14 by entanglement and 15 by Schrödinger’s cat.


The steady development of the quantum theory that has taken place during the present century was made possible only by continual reference to the Correspondence Principle of Bohr, according to which, classical theory can give valuable information about quantum phenomena in spite of the essential differences in the fundamental ideas of the two theories. A masterful advance was made by Heisenberg in 1925, who showed how equations of classical physics could be taken over in a formal way and made to apply to quantities of importance in quantum theory, thereby establishing the Correspondence Principle on a quantitative basis and laying the foundations of the new Quantum Mechanics. Heisenberg’s scheme was found to fit wonderfully well with the Hamiltonian theory of classical mechanics and enabled one to apply to quantum theory all the information that classical theory supplies, in so far as this information is consistent with the Hamiltonian form. Thus one was able to build up a satisfactory quantum mechanics for dealing with any dynamical system composed of interacting particles, provided the interaction could be expressed by means of an energy term to be added to the Hamiltonian function. This does not exhaust the sphere of usefulness of the classical theory. Classical electrodynamics, in its accurate (restricted) relativistic form, teaches us that the idea of an interaction energy between particles is only an approxi­mation and should be replaced by the idea of each particle emitting waves which travel outward with a finite velocity and influence the other particles in passing over them. We must find a way of taking over this new information into the quantum theory and must set up a relativistic quantum mechanics, before we can dispense with the Correspondence Principle.


Entropy ◽  
2020 ◽  
Vol 22 (7) ◽  
pp. 747
Author(s):  
Arkady Plotnitsky

Following the view of several leading quantum-information theorists, this paper argues that quantum phenomena, including those exhibiting quantum correlations (one of their most enigmatic features), and quantum mechanics may be best understood in quantum-informational terms. It also argues that this understanding is implicit already in the work of some among the founding figures of quantum mechanics, in particular W. Heisenberg and N. Bohr, half a century before quantum information theory emerged and confirmed, and gave a deeper meaning to, to their insights. These insights, I further argue, still help this understanding, which is the main reason for considering them here. My argument is grounded in a particular interpretation of quantum phenomena and quantum mechanics, in part arising from these insights as well. This interpretation is based on the concept of reality without realism, RWR (which places the reality considered beyond representation or even conception), introduced by this author previously, in turn, following Heisenberg and Bohr, and in response to quantum information theory.


Quanta ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 68-87 ◽  
Author(s):  
Andrea Oldofredi ◽  
Michael Esfeld

Paul Dirac has been undoubtedly one of the central figures of the last century physics, contributing in several and remarkable ways to the development of quantum mechanics; he was also at the centre of an active community of physicists, with whom he had extensive interactions and correspondence. In particular, Dirac was in close contact with Bohr, Heisenberg and Pauli. For this reason, among others, Dirac is generally considered a supporter of the Copenhagen interpretation of quantum mechanics. Similarly, he was considered a physicist sympathetic with the positivistic attitude which shaped the development of quantum theory in the 1920s. Against this background, the aim of the present essay is twofold: on the one hand, we will argue that, analyzing specific examples taken from Dirac's published works, he can neither be considered a positivist nor a physicist methodologically guided by the observability doctrine. On the other hand, we will try to disentangle Dirac's figure from the mentioned Copenhagen interpretation, since in his long career he employed remarkably different—and often contradicting—methodological principles and philosophical perspectives with respect to those followed by the supporters of that interpretation.Quanta 2019; 8: 68–87.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Aaron C.H. Davey

The father of quantum mechanics, Erwin Schrodinger, was one of the most important figures in the development of quantum theory. He is perhaps best known for his contribution of the wave equation, which would later result in his winning of the Nobel Prize for Physics in 1933. The Schrodinger wave equation describes the quantum mechanical behaviour of particles and explores how the Schrodinger wave functions of a system change over time. This project is concerned about exploring the one-dimensional case of the Schrodinger wave equation in a harmonic oscillator system. We will give the solutions, called eigenfunctions, of the equation that satisfy certain conditions. Furthermore, we will show that this happens only for particular values called eigenvalues.


2020 ◽  
pp. 185-197
Author(s):  
Alastair Wilson

Distinguish contingency in general from anthropic contingency. The former is what really could happen; the latter is what really could be observed to happen. Quantum histories which host no life cannot, as a matter of obvious necessity, be observed. This distinction generates an anthropic observation selection effect, which has been employed in response to the fine-tuning argument for the design hypothesis. This chapter argues that fine-tuning is a genuine phenomenon that cries out for explanation; that in one-world approaches to quantum theory a chancy determination of cosmological parameters would render the one universe we are in preposterously lucky; that no preposterous luck is required from the perspective of quantum modal realism; and that the correct interpretation of quantum mechanics turns out to have a significant evidential bearing on the design question.


1995 ◽  
Vol 05 (01) ◽  
pp. 3-16 ◽  
Author(s):  
ILYA PRIGOGINE

Nonintegrable Poincaré systems with continuous spectrum (so-called Large Poincaré Systems, LPS) lead to the appearance of diffusive terms in the framework of dynamics. These terms break time symmetry. They lead, therefore, to limitations to classical trajectory dynamics and of wave functions. These diffusive terms correspond to well-defined classes of dynamical processes (i.e., so-called “vacuum-vacuum” transitions). The diffusive effects are amplified in situations corresponding to persistent interactions. As a result, we have to include already in the fundamental dynamical description the two aspects, probability and irreversibility, which are so conspicuous on the macroscopic level. We have to formulate both classical and quantum mechanics on the Liouville level of probability distributions (or density matrices). For integrable systems, we recover the usual formulations of classical or quantum mechanics. Instead of being irreducible concepts, which cannot be further analyzed, trajectories and wave functions appear as special solutions of the Liouville-von Neumann equations. This extension of classical and quantum dynamics permits us to unify the two concepts of nature we inherited from the 19th century, based on the one hand on dynamical time-reversible laws and on the other on an evolutionary view associated to entropy. It leads also to a unified formulation of quantum theory avoiding the conventional dual structure based on Schrödinger’s equation on the one hand, and on the “collapse” of the wave function on the other. A dynamical interpretation is given to processes such as decoherence or approach to equilibrium without any appeal to extra dynamic considerations (such as the many-world theory, coarse graining or averaging over the environment). There is a striking parallelism between classical and quantum theory. For LPS we have, in general, both a “collapse” of trajectories and of wave functions for LPS. In both cases, we need a generalized formulation of dynamics in terms of probability distributions or density matrices. Since the beginning of this century, we know that classical mechanics had to be generalized to take into account the existence of universal constants. We now see that classical as well as quantum mechanics also have to be extended to include unstable dynamical systems such as LPS. As a result, we achieve a new formulation of "laws of physics" dealing no more with certitudes but with probabilities. The formulation is appropriate to describe an open, evolving universe.


Entropy ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 656 ◽  
Author(s):  
Arkady Plotnitsky

The article reconsiders quantum theory in terms of the following principle, which can be symbolically represented as QUANTUMNESS → PROBABILITY → ALGEBRA and will be referred to as the QPA principle. The principle states that the quantumness of physical phenomena, that is, the specific character of physical phenomena known as quantum, implies that our predictions concerning them are irreducibly probabilistic, even in dealing with quantum phenomena resulting from the elementary individual quantum behavior (such as that of elementary particles), which in turn implies that our theories concerning these phenomena are fundamentally algebraic, in contrast to more geometrical classical or relativistic theories, although these theories, too, have an algebraic component to them. It follows that one needs to find an algebraic scheme able make these predictions in a given quantum regime. Heisenberg was first to accomplish this in the case of quantum mechanics, as matrix mechanics, whose matrix character testified to his algebraic method, as Einstein characterized it. The article explores the implications of the Heisenberg method and of the QPA principle for quantum theory, and for the relationships between mathematics and physics there, from a nonrealist or, in terms of this article, “reality-without-realism” or RWR perspective, defining the RWR principle, thus joined to the QPA principle.


2014 ◽  
Vol 28 (21) ◽  
pp. 1430014
Author(s):  
Theo M. Nieuwenhuizen ◽  
Marti Perarnau-Llobet ◽  
Roger Balian

In textbooks, ideal quantum measurements are described in terms of the tested system only by the collapse postulate and Born's rule. This level of description offers a rather flexible position for the interpretation of quantum mechanics. Here we analyse an ideal measurement as a process of interaction between the tested system S and an apparatus A, so as to derive the properties postulated in textbooks. We thus consider within standard quantum mechanics the measurement of a quantum spin component ŝz by an apparatus A, being a magnet coupled to a bath. We first consider the evolution of the density operator of S + A describing a large set of runs of the measurement process. The approach describes the disappearance of the off-diagonal terms ("truncation") of the density matrix as a physical effect due to A, while the registration of the outcome has classical features due to the large size of the pointer variable, the magnetization. A quantum ambiguity implies that the density matrix at the final time can be decomposed on many bases, not only the one of the measurement. This quantum oddity prevents to connect individual outcomes to measurements, a difficulty known as the "measurement problem". It is shown that it is circumvented by the apparatus as well, since the evolution in a small time interval erases all decompositions, except the one on the measurement basis. Once one can derive the outcome of individual events from quantum theory, the so-called collapse of the wavefunction or the reduction of the state appears as the result of a selection of runs among the original large set. Hence nothing more than standard quantum mechanics is needed to explain features of measurements. The employed statistical formulation is advocated for the teaching of quantum theory.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 166
Author(s):  
Michael Beyer ◽  
Wolfgang Paul

Among the famous formulations of quantum mechanics, the stochastic picture developed since the middle of the last century remains one of the less known ones. It is possible to describe quantum mechanical systems with kinetic equations of motion in configuration space based on conservative diffusion processes. This leads to the representation of physical observables through stochastic processes instead of self-adjoint operators. The mathematical foundations of this approach were laid by Edward Nelson in 1966. It allows a different perspective on quantum phenomena without necessarily using the wave-function. This article recaps the development of stochastic mechanics with a focus on variational and extremal principles. Furthermore, based on recent developments of optimal control theory, the derivation of generalized canonical equations of motion for quantum systems within the stochastic picture are discussed. These so-called quantum Hamilton equations add another layer to the different formalisms from classical mechanics that find their counterpart in quantum mechanics.


Sign in / Sign up

Export Citation Format

Share Document