scholarly journals Against the Tyranny of ‘Pure States’ in Quantum Theory

Author(s):  
C. de Ronde ◽  
C. Massri
Keyword(s):  
2012 ◽  
Vol 27 (01n03) ◽  
pp. 1345012 ◽  
Author(s):  
LUCIEN HARDY

In this paper we consider theories in which reality is described by some underlying variables, λ. Each value these variables can take represents an ontic state (a particular state of reality). The preparation of a quantum state corresponds to a distribution over the ontic states, λ. If we make three basic assumptions, we can show that the distributions over ontic states corresponding to distinct pure states are nonoverlapping. This means that we can deduce the quantum state from a knowledge of the ontic state. Hence, if these assumptions are correct, we can claim that the quantum state is a real thing (it is written into the underlying variables that describe reality). The key assumption we use in this proof is ontic indifference — that quantum transformations that do not affect a given pure quantum state can be implemented in such a way that they do not affect the ontic states in the support of that state. In fact this assumption is violated in the Spekkens toy model (which captures many aspects of quantum theory and in which different pure states of the model have overlapping distributions over ontic states). This paper proves that ontic indifference must be violated in any model reproducing quantum theory in which the quantum state is not a real thing. The argument presented in this paper is different from that given in a recent paper by Pusey, Barrett and Rudolph. It uses a different key assumption and it pertains to a single copy of the system in question.


Quantum ◽  
2017 ◽  
Vol 1 ◽  
pp. 15 ◽  
Author(s):  
Thomas D. Galley ◽  
Lluis Masanes

The standard postulates of quantum theory can be divided into two groups: the first one characterizes the structure and dynamics of pure states, while the second one specifies the structure of measurements and the corresponding probabilities. In this work we keep the first group of postulates and characterize all alternatives to the second group that give rise to finite-dimensional sets of mixed states. We prove a correspondence between all these alternatives and a class of representations of the unitary group. Some features of these probabilistic theories are identical to quantum theory, but there are important differences in others. For example, some theories have three perfectly distinguishable states in a two-dimensional Hilbert space. Others have exotic properties such as lack of bit symmetry, the violation of no simultaneous encoding (a property similar to information causality) and the existence of maximal measurements without phase groups. We also analyze which of these properties single out the Born rule.


1998 ◽  
Vol 45 (2) ◽  
pp. 377-402 ◽  
Author(s):  
EDUARD SCHMIDT , JOHN JEFFERS , STEPHEN M.

1971 ◽  
Vol 14 (6) ◽  
pp. 135-156 ◽  
Author(s):  
J. Amran Sussmann
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document