scholarly journals Semantically-oriented mutation operator in cartesian genetic programming for evolutionary circuit design

Author(s):  
David Hodan ◽  
Vojtech Mrazek ◽  
Zdenek Vasicek
Author(s):  
Wei Fang ◽  
Mindan Gu

AbstractCartesian Genetic Programming (CGP) is a variant of Genetic Programming (GP) with the individuals represented by a two-dimensional acyclic directed graph, which can flexibly encode many computing structures. In general, CGP only uses a point mutation operator and the genotype of an individual is of fixed size, which may lead to the lack of population diversity and then cause the premature convergence. To address this problem in CGP, we propose a Frameshift Mutation Cartesian Genetic Programming (FMCGP), which is inspired by the DNA mutation mechanism in biology and the frameshift mutation caused by insertion or deletion of nodes is introduced to CGP. The individual in FMCGP has variable-length genotype and the proposed frameshift mutation operator helps to generate more diverse offspring individuals by changing the compiling framework of genotype. FMCGP is evaluated on the symbolic regression problems and Even-parity problems. Experimental results show that FMCGP does not exhibit the bloat problem and the use of frameshift mutation improves the search performance of the standard CGP.


Sign in / Sign up

Export Citation Format

Share Document