Fuzzy Logic Determination of Lithologies from Well Log Data: Application to the KTB Project Data set (Germany)

2013 ◽  
Vol 34 (4) ◽  
pp. 413-439 ◽  
Author(s):  
David Bosch ◽  
Juanjo Ledo ◽  
Pilar Queralt
Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. WA147-WA158
Author(s):  
Kaibo Zhou ◽  
Jianyu Zhang ◽  
Yusong Ren ◽  
Zhen Huang ◽  
Luanxiao Zhao

Lithology identification based on conventional well-logging data is of great importance for geologic features characterization and reservoir quality evaluation in the exploration and production development of petroleum reservoirs. However, there are some limitations in the traditional lithology identification process: (1) It is very time consuming to build a model so that it cannot realize real-time lithology identification during well drilling, (2) it must be modeled by experienced geologists, which consumes a lot of manpower and material resources, and (3) the imbalance of labeled data in well-log data may reduce the classification performance of the model. We have developed a gradient boosting decision tree (GBDT) algorithm combining synthetic minority oversampling technique (SMOTE) to realize fast and automatic lithology identification. First, the raw well-log data are normalized by maximum and minimum normalization algorithm. Then, SMOTE is adopted to balance the number of samples in each class in training process. Next, a lithology identification model is built by GBDT to fit the preprocessed training data set. Finally, the built model is verified with the testing data set. The experimental results indicate that the proposed approach improves the lithology identification performance compared with other machine-learning approaches.


2020 ◽  
Vol 8 (4) ◽  
pp. T1057-T1069
Author(s):  
Ritesh Kumar Sharma ◽  
Satinder Chopra ◽  
Larry Lines

The discrimination of fluid content and lithology in a reservoir is important because it has a bearing on reservoir development and its management. Among other things, rock-physics analysis is usually carried out to distinguish between the lithology and fluid components of a reservoir by way of estimating the volume of clay, water saturation, and porosity using seismic data. Although these rock-physics parameters are easy to compute for conventional plays, there are many uncertainties in their estimation for unconventional plays, especially where multiple zones need to be characterized simultaneously. We have evaluated such uncertainties with reference to a data set from the Delaware Basin where the Bone Spring, Wolfcamp, Barnett, and Mississippian Formations are the prospective zones. Attempts at seismic reservoir characterization of these formations have been developed in Part 1 of this paper, where the geologic background of the area of study, the preconditioning of prestack seismic data, well-log correlation, accounting for the temporal and lateral variation in the seismic wavelets, and building of robust low-frequency model for prestack simultaneous impedance inversion were determined. We determine the challenges and the uncertainty in the characterization of the Bone Spring, Wolfcamp, Barnett, and Mississippian sections and explain how we overcame those. In the light of these uncertainties, we decide that any deterministic approach for characterization of the target formations of interest may not be appropriate and we build a case for adopting a robust statistical approach. Making use of neutron porosity and density porosity well-log data in the formations of interest, we determine how the type of shale, volume of shale, effective porosity, and lithoclassification can be carried out. Using the available log data, multimineral analysis was also carried out using a nonlinear optimization approach, which lent support to our facies classification. We then extend this exercise to derived seismic attributes for determination of the lithofacies volumes and their probabilities, together with their correlations with the facies information derived from mud log data.


Sign in / Sign up

Export Citation Format

Share Document