MOCASS: A Satellite Mission Concept Using Cold Atom Interferometry for Measuring the Earth Gravity Field

2019 ◽  
Vol 40 (5) ◽  
pp. 1029-1053 ◽  
Author(s):  
Federica Migliaccio ◽  
Mirko Reguzzoni ◽  
Khulan Batsukh ◽  
Guglielmo Maria Tino ◽  
Gabriele Rosi ◽  
...  
Metrologia ◽  
2010 ◽  
Vol 47 (3) ◽  
pp. 341-342
Author(s):  
H Baumann ◽  
E E Klingelé ◽  
A L Eichenberger ◽  
B Jeckelmann ◽  
P Richard

1983 ◽  
Vol 10 (9) ◽  
pp. 599-607 ◽  
Author(s):  
J.J. Runavot ◽  
C. Bouzat ◽  
A. Bernard ◽  
B. Sacleux

2005 ◽  
Author(s):  
R. Benz ◽  
M. Langemann ◽  
M. Gramolla ◽  
G. Mecke

2015 ◽  
Vol 26 (S1) ◽  
pp. 13-23 ◽  
Author(s):  
Riccardo Barzaghi ◽  
Federica Migliaccio ◽  
Mirko Reguzzoni ◽  
Alberta Albertella

Author(s):  
Fernando Sansò ◽  
Mirko Reguzzoni ◽  
Riccardo Barzaghi

2012 ◽  
Vol 90 (9) ◽  
pp. 883-888 ◽  
Author(s):  
G. Renzetti

The low-altitude effects of LARES are examined to determined how they can impact the outcome of the hoped 1% frame-dragging measurement in the LARES–LAGEOS experiment. This analysis, based on a different approach than other studies recently appearing in the literature, shows that the spherical harmonics of the Earth gravity field with degree ℓ > 60 may represent a threat because their errors map significantly into LARES orbital disturbances compared to frame-dragging. The GIF48 model was used. It is questionable whether future Earth gravity models by GRACE and GOCE will be of sufficient accuracy.


2021 ◽  
Vol 13 (17) ◽  
pp. 3491
Author(s):  
Luping Zhong ◽  
Krzysztof Sośnica ◽  
Matthias Weigelt ◽  
Bingshi Liu ◽  
Xiancai Zou

The Earth’s time-variable gravity field is of great significance to study mass change within the Earth’s system. Since 2002, the NASA-DLR Gravity Recovery and Climate Experiment (GRACE) and its successor GRACE follow-on mission provide observations of monthly changes in the Earth gravity field with unprecedented accuracy and resolution by employing low-low satellite-to-satellite tracking (LLSST) measurements. In addition to LLSST, monthly gravity field models can be acquired from satellite laser ranging (SLR) and high-low satellite-to-satellite tracking (HLSST). The monthly gravity field solutions HLSST+SLR were derived by combining HLSST observations of low earth orbiting (LEO) satellites with SLR observations of geodetic satellites. Bandpass filtering was applied to the harmonic coefficients of HLSST+SLR solutions to reduce noise. In this study, we analyzed the performance of the monthly HLSST+SLR solutions in the spectral and spatial domains. The results show that: (1) the accuracies of HLSST+SLR solutions are comparable to those from GRACE for coefficients below degree 10, and significantly improved compared to those of SLR-only and HLSST-only solutions; (2) the effective spatial resolution could reach 1000 km, corresponding to the spherical harmonic coefficient degree 20, which is higher than that of the HLSST-only solutions. Compared with the GRACE solutions, the global mass redistribution features and magnitudes can be well identified from HLSST+SLR solutions at the spatial resolution of 1000 km, although with much noise. In the applications of regional mass recovery, the seasonal variations over the Amazon Basin and the long-term trend over Greenland derived from HLSST+SLR solutions truncated to degree 20 agree well with those from GRACE solutions without truncation, and the RMS of mass variations is 282 Gt over the Amazon Basin and 192 Gt in Greenland. We conclude that HLSST+SLR can be an alternative option to estimate temporal changes in the Earth gravity field, although with far less spatial resolution and lower accuracy than that offered by GRACE. This approach can monitor the large-scale mass transport during the data gaps between the GRACE and the GRACE follow-on missions.


Sign in / Sign up

Export Citation Format

Share Document