Over-expression of Fgf8 in cardiac neural crest cells leads to persistent truncus arteriosus

Author(s):  
Aijuan Tian ◽  
Shangqi Wang ◽  
Haoru Wang ◽  
Nan Li ◽  
Han Liu ◽  
...  
2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Joshua Wayne Vincentz ◽  
Ralston Barnes ◽  
Beth Firulli ◽  
Douglas Spicer ◽  
Anthony Firulli

Author(s):  
Shun Yan ◽  
Jin Lu ◽  
Kai Jiao

The cardiac neural crest cells (cNCCs) is a transient, migratory cell population that contribute to the formation of major arteries and the septa and valves of the heart. Abnormal development of cNCCs leads to a spectrum of congenital heart defects that mainly affect the outflow region of the hearts. Signaling molecules and transcription factors are the best studied regulatory events controlling cNCC development. In recent years, however, accumulated evidence supports that epigenetic regulation also plays an important role in cNCC development. Here, we summarize the functions of epigenetic regulators during cNCC development as well as cNCC related cardiovascular defects. These factors include ATP-dependent chromatin remodeling factors, histone modifiers and DNA methylation modulators. In many cases, mutations in the genes encoding these factors are known to cause inborn heart diseases. A better understanding of epigenetic regulators, their activities and their roles during heart development will ultimately contribute to the development of new clinical applications for patients with congenital heart disease.


Development ◽  
1997 ◽  
Vol 124 (2) ◽  
pp. 505-514 ◽  
Author(s):  
S.J. Conway ◽  
D.J. Henderson ◽  
A.J. Copp

Neural crest cells originating in the occipital region of the avian embryo are known to play a vital role in formation of the septum of the cardiac outflow tract and to contribute cells to the aortic arches, thymus, thyroid and parathyroids. This ‘cardiac’ neural crest sub-population is assumed to exist in mammals, but without direct evidence. In this paper we demonstrate, using RT-PCR and in situ hybridisation, that Pax3 expression can serve as a marker of cardiac neural crest cells in the mouse embryo. Cells of this lineage were traced from the occipital neural tube, via branchial arches 3, 4 and 6, into the aortic sac and aorto-pulmonary outflow tract. Confirmation that these Pax3-positive cells are indeed cardiac neural crest is provided by experiments in which hearts were deprived of a source of colonising neural crest, by organ culture in vitro, with consequent lack of up-regulation of Pax3. Occipital neural crest cell outgrowths in vitro were also shown to express Pax3. Mutation of Pax3, as occurs in the splotch (Sp2H) mouse, results in development of conotruncal heart defects including persistent truncus arteriosus. Homozygotes also exhibit defects of the aortic arches, thymus, thyroid and parathyroids. Pax3-positive neural crest cells were found to emigrate from the occipital neural tube of Sp2H/Sp2H embryos in a relatively normal fashion, but there was a marked deficiency or absence of neural crest cells traversing branchial arches 3, 4 and 6, and entering the cardiac outflow tract. This decreased expression of Pax3 in Sp2H/Sp2H embryos was not due to down-regulation of Pax3 in neural crest cells, as use of independent neural crest markers, Hoxa-3, CrabpI, Prx1, Prx2 and c-met also revealed a deficiency of migrating cardiac neural crest cells in homozygous embryos. This work demonstrates the essential role of the cardiac neural crest in formation of the heart and great vessels in the mouse and, furthermore, shows that Pax3 function is required for the cardiac neural crest to complete its migration to the developing heart.


1998 ◽  
Vol 143 (6) ◽  
pp. 1725-1734 ◽  
Author(s):  
G.Y. Huang ◽  
E.S. Cooper ◽  
K. Waldo ◽  
M.L. Kirby ◽  
N.B. Gilula ◽  
...  

Previous studies showed that conotruncal heart malformations can arise with the increase or decrease in α1 connexin function in neural crest cells. To elucidate the possible basis for the quantitative requirement for α1 connexin gap junctions in cardiac development, a neural crest outgrowth culture system was used to examine migration of neural crest cells derived from CMV43 transgenic embryos overexpressing α1 connexins, and from α1 connexin knockout (KO) mice and FC transgenic mice expressing a dominant-negative α1 connexin fusion protein. These studies showed that the migration rate of cardiac neural crest was increased in the CMV43 embryos, but decreased in the FC transgenic and α1 connexin KO embryos. Migration changes occurred in step with connexin gene or transgene dosage in the homozygous vs. hemizygous α1 connexin KO and CMV43 embryos, respectively. Dye coupling analysis in neural crest cells in the outgrowth cultures and also in the living embryos showed an elevation of gap junction communication in the CMV43 transgenic mice, while a reduction was observed in the FC transgenic and α1 connexin KO mice. Further analysis using oleamide to downregulate gap junction communication in nontransgenic outgrowth cultures showed that this independent method of reducing gap junction communication in cardiac crest cells also resulted in a reduction in the rate of crest migration. To determine the possible relevance of these findings to neural crest migration in vivo, a lacZ transgene was used to visualize the distribution of cardiac neural crest cells in the outflow tract. These studies showed more lacZ-positive cells in the outflow septum in the CMV43 transgenic mice, while a reduction was observed in the α1 connexin KO mice. Surprisingly, this was accompanied by cell proliferation changes, not in the cardiac neural crest cells, but in the myocardium— an elevation in the CMV43 mice vs. a reduction in the α1 connexin KO mice. The latter observation suggests that cardiac neural crest cells may have a role in modulating growth and development of non–neural crest– derived tissues. Overall, these findings suggest that gap junction communication mediated by α1 connexins plays an important role in cardiac neural crest migration. Furthermore, they indicate that cardiac neural crest perturbation is the likely underlying cause for heart defects in mice with the gain or loss of α1 connexin function.


Development ◽  
2017 ◽  
Vol 145 (1) ◽  
pp. dev151944 ◽  
Author(s):  
Gaëlle Odelin ◽  
Emilie Faure ◽  
Fanny Coulpier ◽  
Maria Di Bonito ◽  
Fanny Bajolle ◽  
...  

2008 ◽  
Vol 321 (1) ◽  
pp. 251-262 ◽  
Author(s):  
Toshihiko Toyofuku ◽  
Junko Yoshida ◽  
Tamiko Sugimoto ◽  
Midori Yamamoto ◽  
Nobuhiko Makino ◽  
...  

1990 ◽  
Vol 588 (1 Embryonic Ori) ◽  
pp. 427-429 ◽  
Author(s):  
SACHIKO T. MIYAGAWA ◽  
KAREN WALDO ◽  
HITOSHI TOMITA ◽  
MARGARET L. KIRBY

2006 ◽  
Vol 298 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Mariko Sato ◽  
Huai-Jen Tsai ◽  
H. Joseph Yost

Sign in / Sign up

Export Citation Format

Share Document