epigenetic regulation
Recently Published Documents


TOTAL DOCUMENTS

3566
(FIVE YEARS 996)

H-INDEX

115
(FIVE YEARS 16)

2022 ◽  
Author(s):  
Samuel Thudium ◽  
Katherine C Palozola ◽  
Eloise L'Her ◽  
Erica Korb

Epigenetic regulation plays a critical role in many neurodevelopmental disorders, including Autism Spectrum Disorder (ASD). In particular, many such disorders are the result of mutations in genes that encode chromatin modifying proteins. However, while these disorders share many features, it is unclear whether they also share gene expression disruptions resulting from the aberrant regulation of chromatin. We examined 5 chromatin modifiers that are all linked to ASD despite their different roles in regulating chromatin. Specifically, we depleted Ash1L, Chd8, Crebbp, Ehmt1, and Nsd1 in parallel in a highly controlled neuronal culture system. We then identified sets of shared genes, or transcriptional signatures, that are differentially expressed following loss of multiple ASD-linked chromatin modifiers. We examined the functions of genes within the transcriptional signatures and found an enrichment in many neurotransmitter transport genes and activity-dependent genes. In addition, these genes are enriched for specific chromatin features such as bivalent domains that allow for highly dynamic regulation of gene expression. The downregulated transcriptional signature is also observed within multiple mouse models of neurodevelopmental disorders that result in ASD, but not those only associated with intellectual disability. Finally, the downregulated transcriptional signature can distinguish between neurons generated from iPSCs derived from healthy donors and idiopathic ASD patients through RNA-deconvolution, demonstrating that this gene set is relevant to the human disorder. This work identifies a transcriptional signature that is found within many neurodevelopmental syndromes, helping to elucidate the link between epigenetic regulation and the underlying cellular mechanisms that result in ASD.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 147
Author(s):  
Adrián Gonzalo

Newly formed polyploids often show extensive meiotic defects, resulting in aneuploid gametes, and thus reduced fertility. However, while many neopolyploids are meiotically unstable, polyploid lineages that survive in nature are generally stable and fertile; thus, those lineages that survive are those that are able to overcome these challenges. Several genes that promote polyploid stabilization are now known in plants, allowing speculation on the evolutionary origin of these meiotic adjustments. Here, I discuss results that show that meiotic stability can be achieved through the differentiation of certain alleles of certain genes between ploidies. These alleles, at least sometimes, seem to arise by novel mutation, while standing variation in either ancestral diploids or related polyploids, from which alleles can introgress, may also contribute. Growing evidence also suggests that the coevolution of multiple interacting genes has contributed to polyploid stabilization, and in allopolyploids, the return of duplicated genes to single copies (genome fractionation) may also play a role in meiotic stabilization. There is also some evidence that epigenetic regulation may be important, which can help explain why some polyploid lineages can partly stabilize quite rapidly.


2022 ◽  
Author(s):  
Shan Feng ◽  
Ruiming Wang ◽  
Hualiang Tan ◽  
Linlin Zhong ◽  
Yunjiang Cheng ◽  
...  

Petal senescence is controlled by a complex regulatory network. Epigenetic regulation like histone modification influences chromatin state and gene expression. However, involvement of histone methylation in regulating petal senescence is still largely unknown. Here, we found that the trimethylation of histone H3 at Lysine 4 (H3K4me3) is increased during the ethylene induced petal senescence in carnation (Dianthus caryophyllus L.). The H3K4me3 levels are positively associated with the expression of transcription factor DcWRKY75, ethylene biosynthetic genes DcACS1 and DcACO1, and senescence associated genes (SAGs) DcSAG12 and DcSAG29. Further, we identified that carnation DcATX1 (ARABIDOPSIS HOMOLOG OF TRITHORAX1) encodes a histone lysine methyltransferase which can methylate H3K4. Knockdown of DcATX1 delays ethylene induced petal senescence in carnation, which is associated with the downregulated expression of DcWRKY75, DcACO1 and DcSAG12. While overexpression of DcATX1 exhibits the opposite effects. DcATX1 promotes the transcription of DcWRKY75, DcACO1 and DcSAG12 by targeting to their promoters to elevate the H3K4me3 levels. Overall, our results demonstrate that DcATX1 is a H3K4 methyltransferase that promotes the expression of DcWRKY75, DcACO1 and DcSAG12 by regulating H3K4me3 levels, thereby accelerating ethylene induced petal senescence in carnation. This study further indicates that epigenetic regulation is important for plant senescence process.


2022 ◽  
Vol 8 ◽  
Author(s):  
Indulekha C. L. Pillai ◽  
Suowen Xu ◽  
Christoph D. Rau ◽  
Zhihua Wang

Gut Microbes ◽  
2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Vivienne Woo ◽  
Theresa Alenghat

Bone Research ◽  
2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhenqing Liu ◽  
Hye-Lim Lee ◽  
Jin Sook Suh ◽  
Peng Deng ◽  
Chang-Ryul Lee ◽  
...  

AbstractOsteoporosis is a highly prevalent public health burden associated with an increased risk of bone fracture, particularly in aging women. Estrogen, an important medicinal component for the preventative and therapeutic treatment of postmenopausal osteoporosis, induces osteogenesis by activating the estrogen receptor signaling pathway and upregulating the expression of osteogenic genes, such as bone morphogenetic proteins (BMPs). The epigenetic regulation of estrogen-mediated osteogenesis, however, is still unclear. In this report, we found that estrogen significantly induced the expression of lysine-specific demethylase 6B (KDM6B) and that KDM6B depletion by shRNAs led to a significant reduction in the osteogenic potential of DMSCs. Mechanistically, upon estrogen stimulation, estrogen receptor-α (ERα) was recruited to the KDM6B promoter, directly enhancing KDM6B expression. Subsequently, KDM6B was recruited to the BMP2 and HOXC6 promoters, resulting in the removal of H3K27me3 marks and activating the transcription of BMP2 and HOXC6, the master genes of osteogenic differentiation. Furthermore, we found that estrogen enhanced DMSC osteogenesis during calvarial bone regeneration and that estrogen’s pro-osteogenic effect was dependent on KDM6B in vivo. Taken together, our results demonstrate the vital role of the ERα/KDM6B regulatory axis in the epigenetic regulation of the estrogen-dependent osteogenic response.


Author(s):  
Jae-Won Cho ◽  
Hyo Sup Shim ◽  
Chang Young Lee ◽  
Seong Yong Park ◽  
Min Hee Hong ◽  
...  

AbstractLung squamous cell carcinoma (LUSC) is a subtype of non-small cell lung cancer (NSCLC). LUSC occurs at the bronchi, shows a squamous appearance, and often occurs in smokers. To determine the epigenetic regulatory mechanisms of tumorigenesis, we performed a genome-wide analysis of DNA methylation in tumor and adjacent normal tissues from LUSC patients. With the Infinium Methylation EPIC Array, > 850,000 CpG sites, including ~350,000 CpG sites for enhancer regions, were profiled, and the differentially methylated regions (DMRs) overlapping promoters (pDMRs) and enhancers (eDMRs) between tumor and normal tissues were identified. Dimension reduction based on DMR profiles revealed that eDMRs alone and not pDMRs alone can differentiate tumors from normal tissues with the equivalent performance of total DMRs. We observed a stronger negative correlation of LUSC-specific gene expression with methylation for enhancers than promoters. Target genes of eDMRs rather than pDMRs were found to be enriched for tumor-associated genes and pathways. Furthermore, DMR methylation associated with immune infiltration was more frequently observed among enhancers than promoters. Our results suggest that methylation of enhancer regions rather than promoters play more important roles in epigenetic regulation of tumorigenesis and immune infiltration in LUSC.


2022 ◽  
Vol 8 ◽  
Author(s):  
Ying Jiang ◽  
Hong Zhu ◽  
Hong Chen ◽  
Yi-Chen Yu ◽  
Ye-Tao Xu ◽  
...  

Cardiovascular dysfunction in children born after in vitro fertilization (IVF) has been of great concern, the potential molecular mechanisms for such long-term outcomes are still unknown. Here, we found that systolic blood pressure was a little higher in IVF born offspring at 2 years old compared to those born after being naturally conceived. Besides, the expression level of maternally expressed gene 3 (MEG3) was higher in human umbilical vein endothelial cells (HUVECs) from IVF offspring than that in spontaneously born offspring. Pearson correlation test showed that MEG3 relative expression is significantly related to the children's blood pressure (Coefficient = 0.429, P = 0.0262). Furthermore, we found decreased expression of endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) along with elevated expression of endothelial-1(ET1) in HUVECs from IVF offspring, accompanied by lower secretion of nitrite, VEGF, and higher secretion of ET1 in the umbilical cord serum of IVF offspring. Correlation analysis showed MEG3 expression highly correlated with ET1 and Nitrate concentration. With pyrosequencing technology, we found that elevated expression of MEG3 was the result of hypomethylation of the MEG3 promoter. Therefore, our results provide a potential mechanism addressing the high-risk of hypertension in IVF offspring via MEG3 epigenetic regulation.


Sign in / Sign up

Export Citation Format

Share Document