epigenetic regulators
Recently Published Documents


TOTAL DOCUMENTS

378
(FIVE YEARS 162)

H-INDEX

36
(FIVE YEARS 9)

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 170
Author(s):  
Linh Ho ◽  
Nazir Hossen ◽  
Trieu Nguyen ◽  
Au Vo ◽  
Fakhrul Ahsan

Pulmonary arterial hypertension (PAH) is a disease that progress over time and is defined as an increase in pulmonary arterial pressure and pulmonary vascular resistance that frequently leads to right-ventricular (RV) failure and death. Epigenetic modifications comprising DNA methylation, histone remodeling, and noncoding RNAs (ncRNAs) have been established to govern chromatin structure and transcriptional responses in various cell types during disease development. However, dysregulation of these epigenetic mechanisms has not yet been explored in detail in the pathology of pulmonary arterial hypertension and its progression with vascular remodeling and right-heart failure (RHF). Targeting epigenetic regulators including histone methylation, acetylation, or miRNAs offers many possible candidates for drug discovery and will no doubt be a tempting area to explore for PAH therapies. This review focuses on studies in epigenetic mechanisms including the writers, the readers, and the erasers of epigenetic marks and targeting epigenetic regulators or modifiers for treatment of PAH and its complications described as RHF. Data analyses from experimental cell models and animal induced PAH models have demonstrated that significant changes in the expression levels of multiple epigenetics modifiers such as HDMs, HDACs, sirtuins (Sirt1 and Sirt3), and BRD4 correlate strongly with proliferation, apoptosis, inflammation, and fibrosis linked to the pathological vascular remodeling during PAH development. The reversible characteristics of protein methylation and acetylation can be applied for exploring small-molecule modulators such as valproic acid (HDAC inhibitor) or resveratrol (Sirt1 activator) in different preclinical models for treatment of diseases including PAH and RHF. This review also presents to the readers the application of microfluidic devices to study sex differences in PAH pathophysiology, as well as for epigenetic analysis.


2021 ◽  
Vol 23 (1) ◽  
pp. 392
Author(s):  
Che-Yuan Hu ◽  
Kuan-Yu Wu ◽  
Tsung-Yen Lin ◽  
Chien-Chin Chen

Prostate cancer is featured by its heterogeneous nature, which indicates a different prognosis. Castration-resistant prostate cancer (CRPC) is a hallmark of the treatment-refractory stage, and the median survival of patients is only within two years. Neuroendocrine prostate cancer (NEPC) is an aggressive variant that arises from de novo presentation of small cell carcinoma or treatment-related transformation with a median survival of 1–2 years from the time of diagnosis. The epigenetic regulators, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been proven involved in multiple pathologic mechanisms of CRPC and NEPC. LncRNAs can act as competing endogenous RNAs to sponge miRNAs that would inhibit the expression of their targets. After that, miRNAs interact with the 3’ untranslated region (UTR) of target mRNAs to repress the step of translation. These interactions may modulate gene expression and influence cancer development and progression. Otherwise, epigenetic regulators and genetic mutation also promote neuroendocrine differentiation and cancer stem-like cell formation. This step may induce neuroendocrine prostate cancer development. This review aims to provide an integrated, synthesized overview under current evidence to elucidate the crosstalk of lncRNAs with miRNAs and their influence on castration resistance or neuroendocrine differentiation of prostate cancer. Notably, we also discuss the mechanisms of lncRNA–miRNA interaction in androgen receptor-independent prostate cancer, such as growth factors, oncogenic signaling pathways, cell cycle dysregulation, and cytokines or other transmembrane proteins. Conclusively, we underscore the potential of these communications as potential therapeutic targets in the future.


Neuroforum ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mira Jakovcevski ◽  
Geraldine Zimmer-Bensch

Abstract Brain development comprises a fine-tuned ensemble of molecular processes that need to be orchestrated in a very coordinated way throughout time and space. A wide array of epigenetic mechanisms, ranging from DNA methylation and histone modifications to noncoding RNAs, have been identified for their major role in guiding developmental processes such as progenitor proliferation, neuronal migration, and differentiation through precise regulation of gene expression programs. The importance of epigenetic processes during development is reflected by the high prevalence of neurodevelopmental diseases which are caused by a lack or mutation of genes encoding for transcription factors and other epigenetic regulators. Most of these factors process central functions for proper brain development, and respective mutations lead to severe cognitive defects. A better understanding of epigenetic programs during development might open new routes toward better treatment options for related diseases.


mBio ◽  
2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Shan Wei ◽  
Songjian Lu ◽  
Lifan Liang ◽  
Xian Wang ◽  
Wan Li ◽  
...  

By performing a genome-wide CRISPR-Cas9 screening, we have identified cellular epigenetic regulators that are essential for KSHV-induced cellular transformation. Among them, GRWD1 regulates epigenetic active mark H3K4me3 by interacting with WDR5 and MLL2 and recruiting them to chromatin loci of specific genes in KSHV-transformed cells.


2021 ◽  
Vol 22 (24) ◽  
pp. 13673
Author(s):  
Yuna Kim ◽  
Hyanggi Ji ◽  
Eunae Cho ◽  
Nok-Hyun Park ◽  
Kyeonghwan Hwang ◽  
...  

Functional studies of organisms and human models have revealed that epigenetic changes can significantly impact the process of aging. Non-coding RNA (ncRNA), one of epigenetic regulators, plays an important role in modifying the expression of mRNAs and their proteins. It can mediate the phenotype of cells. It has been reported that nc886 (=vtRNA2-1 or pre-miR-886), a long ncRNA, can suppress tumor formation and photo-damages of keratinocytes caused by UVB. The aim of this study was to determine the role of nc886 in replicative senescence of fibroblasts and determine whether substances capable of controlling nc886 expression could regulate cellular senescence. In replicative senescence fibroblasts, nc886 expression was decreased while methylated nc886 was increased. There were changes of senescence biomarkers including SA-β-gal activity and expression of p16INK4A and p21Waf1/Cip1 in senescent cells. These findings indicate that the decrease of nc886 associated with aging is related to cellular senescence of fibroblasts and that increasing nc886 expression has potential to suppress cellular senescence. AbsoluTea Concentrate 2.0 (ATC) increased nc886 expression and ameliorated cellular senescence of fibroblasts by inhibiting age-related biomarkers. These results indicate that nc886 has potential as a new target for anti-aging and that ATC can be a potent epigenetic anti-aging ingredient.


Haematologica ◽  
2021 ◽  
Author(s):  
Kevin S. Tanager ◽  
Jovian Yu ◽  
Brian C-H Chiu ◽  
Timothy C. Carll ◽  
Alexandra H. Tatarian ◽  
...  

Not available.


2021 ◽  
Author(s):  
Daniel Bsteh ◽  
Hagar F Moussa ◽  
Georg Michlits ◽  
Ramesh Yelagandula ◽  
Jingkui Wang ◽  
...  

Polycomb Repressive Complexes 1 and 2 (PRC1, PRC2) are conserved epigenetic regulators that promote transcriptional silencing. PRC1 and PRC2 converge on shared targets, catalyzing repressive histone modifications. In addition, a subset of PRC1/PRC2 targets engage in long-range interactions whose functions in gene silencing are poorly understood. Using a CRISPR screen in mouse embryonic stem cells, we identified that the cohesin regulator PDS5A links transcriptional silencing by Polycomb and 3D genome organization. PDS5A deletion impairs cohesin unloading and results in derepression of subset of endogenous PRC1/PRC2 target genes. Importantly, derepression is not associated with loss of repressive Polycomb chromatin modifications. Instead, loss of PDS5A leads to aberrant cohesin activity, ectopic insulation sites and specific reduction of ultra-long Polycomb loops. We infer that these loops are important for robust silencing at a subset of Polycomb target genes and that maintenance of cohesin-dependent genome architecture is critical for Polycomb regulation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tanggang Deng ◽  
Yugang Xiao ◽  
Yi Dai ◽  
Lin Xie ◽  
Xiong Li

Prostate cancer (PCa) is a top-incidence malignancy, and the second most common cause of death amongst American men and the fifth leading cause of cancer death in men around the world. Androgen receptor (AR), the key transcription factor, is critical for the progression of PCa by regulating a series of target genes by androgen stimulation. A number of co-regulators of AR, including co-activators or co-repressors, have been implicated in AR-mediated gene transcription and PCa progression. Epigenetic regulators, by modifying chromatin integrity and accessibility for transcription regulation without altering DNA sequences, influence the transcriptional activity of AR and further regulate the gene expression of AR target genes in determining cell fate, PCa progression and therapeutic response. In this review, we summarized the structural interaction of AR and epigenetic regulators including histone or DNA methylation, histone acetylation or non-coding RNA, and functional synergy in PCa progression. Importantly, epigenetic regulators have been validated as diagnostic markers and therapeutic targets. A series of epigenetic target drugs have been developed, and have demonstrated the potential to treat PCa alone or in combination with antiandrogens.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3459
Author(s):  
Avik Dutta ◽  
Harini Venkataganesh ◽  
Paul E. Love

Immature CD4− CD8− thymocytes progress through several developmental steps in the thymus, ultimately emerging as mature CD4+ (helper) or CD8+ (cytotoxic) T cells. Activation of naïve CD4+ and CD8+ T cells in the presence of specific cytokines results in the induction of transcriptional programs that result in their differentiation into effector or memory cells and in the case of CD4+ T cells, the adoption of distinct T-helper fates. Previous studies have shown that histone modification and DNA methylation play important roles in each of these events. More recently, the roles of specific epigenetic regulators in T cell differentiation have been clarified. The identification of the epigenetic modifications and modifiers that control mature T cell differentiation and specification has also provided further insights into how dysregulation of these processes can lead to cancer or autoimmune diseases. In this review, we summarize recent findings that have provided new insights into epigenetic regulation of T cell differentiation in both mice and humans.


Sign in / Sign up

Export Citation Format

Share Document