dirac structures
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Fang-Min Cai ◽  
Wei-Jun Deng ◽  
Xin-Qiang Li ◽  
Ya-Dong Yang

Abstract With updated experimental data and improved theoretical calculations, several significant deviations are being observed between the Standard Model predictions and the experimental measurements of the branching ratios of $$ {\overline{B}}_{(s)}^0\to {D}_{(s)}^{\left(\ast \right)+}{L}^{-} $$ B ¯ s 0 → D s ∗ + L − decays, where L is a light meson from the set {π, ρ, K(∗)}. Especially for the two channels $$ {\overline{B}}^0\to {D}^{+}{K}^{-} $$ B ¯ 0 → D + K − and $$ {\overline{B}}_s^0\to {D}_s^{+}{\pi}^{-} $$ B ¯ s 0 → D s + π − , both of which are free of the weak annihilation contribution, the deviations observed can even reach 4–5σ. Here we exploit possible new-physics effects in these class-I non-leptonic B-meson decays within the framework of QCD factorization. Firstly, we perform a model-independent analysis of the effects from twenty linearly independent four-quark operators that can contribute, either directly or through operator mixing, to the quark-level b →$$ c\overline{u}d(s) $$ c u ¯ d s transitions. It is found that, under the combined constraints from the current experimental data, the deviations observed could be well explained at the 1σ level by the new-physics four-quark operators with γμ(1 − γ5) ⨂ γμ(1 − γ5) structure, and also at the 2σ level by the operators with (1 + γ5) ⨂ (1 − γ5) and (1 + γ5) ⨂ (1 + γ5) structures. However, the new-physics four-quark operators with other Dirac structures fail to provide a consistent interpretation, even at the 2σ level. Then, as two specific examples of model-dependent considerations, we discuss the case where the new-physics four-quark operators are generated by either a colorless charged gauge boson or a colorless charged scalar, with their masses fixed both at the 1 TeV. Constraints on the effective coefficients describing the couplings of these mediators to the relevant quarks are obtained by fitting to the current experimental data.


2021 ◽  
Vol 32 (04) ◽  
pp. 2150021
Author(s):  
Honglei Lang ◽  
Yu Qiao ◽  
Yanbin Yin

We study Lie bialgebroid crossed modules which are pairs of Lie algebroid crossed modules in duality that canonically give rise to Lie bialgebroids. A one-one correspondence between such Lie bialgebroid crossed modules and co-quadratic Manin triples [Formula: see text] is established, where [Formula: see text] is a co-quadratic Lie algebroid and [Formula: see text] is a pair of transverse Dirac structures in [Formula: see text].


2021 ◽  
Vol 54 (19) ◽  
pp. 198-203
Author(s):  
Arjan van der Schaft ◽  
Bernhard Maschke

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Athanasios Chatzistavrakidis ◽  
Grgur Šimunić

Abstract We study aspects of two-dimensional nonlinear sigma models with Wess-Zumino term corresponding to a nonclosed 3-form, which may arise upon dimensional reduction in the target space. Our goal in this paper is twofold. In a first part, we investigate the conditions for consistent gauging of sigma models in the presence of a nonclosed 3-form. In the Abelian case, we find that the target of the gauged theory has the structure of a contact Courant algebroid, twisted by a 3-form and two 2-forms. Gauge invariance constrains the theory to (small) Dirac structures of the contact Courant algebroid. In the non-Abelian case, we draw a similar parallel between the gauged sigma model and certain transitive Courant algebroids and their corresponding Dirac structures. In the second part of the paper, we study two-dimensional sigma models related to Jacobi structures. The latter generalise Poisson and contact geometry in the presence of an additional vector field. We demonstrate that one can construct a sigma model whose gauge symmetry is controlled by a Jacobi structure, and moreover we twist the model by a 3-form. This construction is then the analogue of WZW-Poisson structures for Jacobi manifolds.


2020 ◽  
Vol 61 (9) ◽  
pp. 092701
Author(s):  
François Gay-Balmaz ◽  
Hiroaki Yoshimura

2020 ◽  
Vol 23 (3) ◽  
Author(s):  
M. Jotz Lean

Abstract This paper reformulates Li-Bland’s definition for LA-Courant algebroids, or Poisson Lie 2-algebroids, in terms of split Lie 2-algebroids and self-dual 2-representations. This definition generalises in a precise sense the characterisation of (decomposed) double Lie algebroids via matched pairs of 2-representations. We use the known geometric examples of LA-Courant algebroids in order to provide new examples of Poisson Lie 2-algebroids, and we explain in this general context Roytenberg’s equivalence of Courant algebroids with symplectic Lie 2-algebroids. We study further the core of an LA-Courant algebroid and we prove that it carries an induced degenerate Courant algebroid structure. In the nondegenerate case, this gives a new construction of a Courant algebroid from the corresponding symplectic Lie 2-algebroid. Finally we completely characterise VB-Dirac and LA-Dirac structures via simpler objects, that we compare to Li-Bland’s pseudo-Dirac structures.


2020 ◽  
Vol 37 (4) ◽  
pp. 1298-1347
Author(s):  
François Gay-Balmaz ◽  
Hiroaki Yoshimura

Abstract The notion of implicit port-Lagrangian systems for nonholonomic mechanics was proposed in Yoshimura & Marsden (2006a, J. Geom. Phys., 57, 133–156; 2006b, J. Geom. Phys., 57, 209–250; 2006c, Proc. of the 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto) as a Lagrangian analogue of implicit port-Hamiltonian systems. Such port-systems have an interconnection structure with ports through which power is exchanged with the exterior and which can be modeled by Dirac structures. In this paper, we present the notions of implicit port-Lagrangian systems and port-Dirac dynamical systems in nonequilibrium thermodynamics by generalizing the Dirac formulation to the case allowing irreversible processes, both for closed and open systems. Port-Dirac systems in nonequilibrium thermodynamics can be also deduced from a variational formulation of nonequilibrium thermodynamics for closed and open systems introduced in Gay-Balmaz & Yoshimura (2017a, J. Geom. Phys., 111, 169–193; 2018a, Entropy, 163, 1–26). This is a type of Lagrange–d’Alembert principle for the specific class of nonholonomic systems with nonlinear constraints of thermodynamic type, which are associated to the entropy production equation of the system. We illustrate our theory with some examples such as a cylinder-piston with ideal gas, an electric circuit with entropy production due to a resistor and an open piston with heat and matter exchange with the exterior.


Sign in / Sign up

Export Citation Format

Share Document