Verifiable Quantum Secret Sharing Scheme Using d-dimensional GHZ State

Author(s):  
Chen-Ming Bai ◽  
Sujuan Zhang ◽  
Lu Liu
2015 ◽  
Vol 29 (27) ◽  
pp. 1550165 ◽  
Author(s):  
Huawang Qin ◽  
Xiaohua Zhu ◽  
Yuewei Dai

A proactive quantum secret sharing scheme is proposed, in which the participants can update their shadows periodically. In an updating period, one participant randomly generates the GHZ states and sends the particles to the other participants, and the participants update their shadows according to the measurement performed on the particles. After an updating period, each participant can change his shadow but the secret is changeless. The old shadows will be useless even if they have been stolen by the attacker. The proactive property is very useful to resist the mobile attacker.


2012 ◽  
Vol 10 (03) ◽  
pp. 1250031 ◽  
Author(s):  
JUAN XU ◽  
HANWU CHEN ◽  
ZHIHAO LIU

Based on an orthogonal set of product states of two three-state particles, a new quantum secret sharing scheme is proposed, which uses a novel distribution strategy so that continuous and independent measurements, rather than particle-wise coordinated ones, are performed. As a result, it is convenient and efficient to implement. The scheme is also secure against several common attacks and gets rid of partial-information leakage due to the revised coding method. Moreover, the quantitative analysis shows that the security can be further improved by using more product states from appropriate multiple sets.


2018 ◽  
Vol 32 (25) ◽  
pp. 1850294 ◽  
Author(s):  
Bingren Chen ◽  
Wei Yang ◽  
Liusheng Huang

A recent paper proposed a semi-quantum secret sharing (SQSS) scheme based on Bell states [A. Yin et al., Mod. Phys. Lett. B. https://doi.org/10.1142/S0217984917501500 ]. This protocol was presumed that only the sender has the quantum power and all participants perform classical operations. However, we find this protocol is not that secure as it is expected. We can utilize the intercept-resend method to attack this scheme. Then, we give an improvement strategy based on semi-quantum key distribution, which ensures that the new scheme resists the attack we have proposed.


2018 ◽  
Vol 32 (22) ◽  
pp. 1850256 ◽  
Author(s):  
Ai Han Yin ◽  
Yan Tong

Semi-quantum secret sharing (SQSS) can transmit secret messages. Most existing SQSS protocols can only use one or two specific entangled states to share unspecific or specific classical message. In this paper, we propose a novel SQSS protocol using N different unspecific two-particle entangled state [Formula: see text], [Formula: see text] to share unspecific message, in which quantum Alice can transmit classical messages with classical Bob and Charlie. In addition, we have proved that the protocol can strongly resist some forms of eavesdropping.


Sign in / Sign up

Export Citation Format

Share Document