scholarly journals Eigenvalues of zero-divisor graphs of finite commutative rings

Author(s):  
Katja Mönius

AbstractWe investigate eigenvalues of the zero-divisor graph $$\Gamma (R)$$ Γ ( R ) of finite commutative rings R and study the interplay between these eigenvalues, the ring-theoretic properties of R and the graph-theoretic properties of $$\Gamma (R)$$ Γ ( R ) . The graph $$\Gamma (R)$$ Γ ( R ) is defined as the graph with vertex set consisting of all nonzero zero-divisors of R and adjacent vertices x, y whenever $$xy = 0$$ x y = 0 . We provide formulas for the nullity of $$\Gamma (R)$$ Γ ( R ) , i.e., the multiplicity of the eigenvalue 0 of $$\Gamma (R)$$ Γ ( R ) . Moreover, we precisely determine the spectra of $$\Gamma ({\mathbb {Z}}_p \times {\mathbb {Z}}_p \times {\mathbb {Z}}_p)$$ Γ ( Z p × Z p × Z p ) and $$\Gamma ({\mathbb {Z}}_p \times {\mathbb {Z}}_p \times {\mathbb {Z}}_p \times {\mathbb {Z}}_p)$$ Γ ( Z p × Z p × Z p × Z p ) for a prime number p. We introduce a graph product $$\times _{\Gamma }$$ × Γ with the property that $$\Gamma (R) \cong \Gamma (R_1) \times _{\Gamma } \cdots \times _{\Gamma } \Gamma (R_r)$$ Γ ( R ) ≅ Γ ( R 1 ) × Γ ⋯ × Γ Γ ( R r ) whenever $$R \cong R_1 \times \cdots \times R_r.$$ R ≅ R 1 × ⋯ × R r . With this product, we find relations between the number of vertices of the zero-divisor graph $$\Gamma (R)$$ Γ ( R ) , the compressed zero-divisor graph, the structure of the ring R and the eigenvalues of $$\Gamma (R)$$ Γ ( R ) .

2020 ◽  
Vol 12 (1) ◽  
pp. 84-101 ◽  
Author(s):  
S. Pirzada ◽  
M. Aijaz

AbstractLet R be a commutative ring with Z*(R) as the set of non-zero zero divisors. The zero divisor graph of R, denoted by Γ(R), is the graph whose vertex set is Z*(R), where two distinct vertices x and y are adjacent if and only if xy = 0. In this paper, we investigate the metric dimension dim(Γ(R)) and upper dimension dim+(Γ(R)) of zero divisor graphs of commutative rings. For zero divisor graphs Γ(R) associated to finite commutative rings R with unity 1 ≠ 0, we conjecture that dim+(Γ(R)) = dim(Γ(R)), with one exception that {\rm{R}} \cong \Pi {\rm\mathbb{Z}}_2^{\rm{n}}, n ≥ 4. We prove that this conjecture is true for several classes of rings. We also provide combinatorial formulae for computing the metric and upper dimension of zero divisor graphs of certain classes of commutative rings besides giving bounds for the upper dimension of zero divisor graphs of rings.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Abdulaziz M. Alanazi ◽  
Mohd Nazim ◽  
Nadeem Ur Rehman

Let A be a commutative ring with unity and let set of all zero divisors of A be denoted by Z A . An ideal ℐ of the ring A is said to be essential if it has a nonzero intersection with every nonzero ideal of A . It is denoted by ℐ ≤ e A . The generalized zero-divisor graph denoted by Γ g A is an undirected graph with vertex set Z A ∗ (set of all nonzero zero-divisors of A ) and two distinct vertices x 1 and x 2 are adjacent if and only if ann x 1 + ann x 2 ≤ e A . In this paper, first we characterized all the finite commutative rings A for which Γ g A is isomorphic to some well-known graphs. Then, we classify all the finite commutative rings A for which Γ g A is planar, outerplanar, or toroidal. Finally, we discuss about the domination number of Γ g A .


2011 ◽  
Vol 10 (04) ◽  
pp. 665-674
Author(s):  
LI CHEN ◽  
TONGSUO WU

Let p be a prime number. Let G = Γ(R) be a ring graph, i.e. the zero-divisor graph of a commutative ring R. For an induced subgraph H of G, let CG(H) = {z ∈ V(G) ∣N(z) = V(H)}. Assume that in the graph G there exists an induced subgraph H which is isomorphic to the complete graph Kp-1, a vertex c ∈ CG(H), and a vertex z such that d(c, z) = 3. In this paper, we characterize the finite commutative rings R whose graphs G = Γ(R) have this property (called condition (Kp)).


Author(s):  
Husam Q. Mohammad ◽  
Nazar H. Shuker ◽  
Luma A. Khaleel

The rings considered in this paper are finite commutative rings with identity, which are not fields. For any ring [Formula: see text] which is not a field and which is not necessarily finite, we denote the set of all zero-divisors of [Formula: see text] by [Formula: see text] and [Formula: see text] by [Formula: see text]. Let [Formula: see text] denote the zero-divisor graph of [Formula: see text] and for a finite ring [Formula: see text], let [Formula: see text] denote the maximum degree of [Formula: see text]. We denote [Formula: see text] by [Formula: see text]. The aim of this paper is to study some properties of [Formula: see text].


2020 ◽  
Vol 29 (2) ◽  
pp. 131-136
Author(s):  
M. IMRAN BHAT ◽  
S. PIRZADA ◽  
AHMAD M. ALGHAMDI

The equivalence class [r] of an element r ∈ R is the set of zero-divisors s such that ann(r) = ann(s), that is, [r] = {s ∈ R : ann(r) = ann(s). The compressed zero-divisor graph, denoted by Γc(R), is the compression of a zero-divisor graph, in which the vertex set is the set of all equivalence classes of nonzero zero-divisors of a ring R, that is, the vertex set of Γc(R) is Re − {[0], [1]}, where Re = {[r] : r ∈ R} and two distinct equivalence classes [r] and [s] are adjacent if and only if rs = 0. In this article, we investigate the planarity of Γc(R) for some finite local rings of order p 2 , p 3 and determine the planarity of compressed zero-divisor graph of some local rings of order 32, whose zero-divisor graph is nonplanar. Further, we determine values of m and n for which Γc(Zn) and Γc(Zn[x]/(xm)) are planar.


2013 ◽  
Vol 12 (04) ◽  
pp. 1250199 ◽  
Author(s):  
T. ASIR ◽  
T. TAMIZH CHELVAM

The intersection graph ITΓ(R) of gamma sets in the total graph TΓ(R) of a commutative ring R, is the undirected graph with vertex set as the collection of all γ-sets in the total graph of R and two distinct vertices u and v are adjacent if and only if u ∩ v ≠ ∅. Tamizh Chelvam and Asir [The intersection graph of gamma sets in the total graph I, to appear in J. Algebra Appl.] studied about ITΓ(R) where R is a commutative Artin ring. In this paper, we continue our interest on ITΓ(R) and actually we study about Eulerian, Hamiltonian and pancyclic nature of ITΓ(R). Further, we focus on certain graph theoretic parameters of ITΓ(R) like the independence number, the clique number and the connectivity of ITΓ(R). Also, we obtain both vertex and edge chromatic numbers of ITΓ(R). In fact, it is proved that if R is a finite commutative ring, then χ(ITΓ(R)) = ω(ITΓ(R)). Having proved that ITΓ(R) is weakly perfect for all finite commutative rings, we further characterize all finite commutative rings for which ITΓ(R) is perfect. In this sequel, we characterize all commutative Artin rings for which ITΓ(R) is of class one (i.e. χ′(ITΓ(R)) = Δ(ITΓ(R))). Finally, it is proved that the vertex connectivity and edge connectivity of ITΓ(R) are equal to the degree of any vertex in ITΓ(R).


2019 ◽  
Vol 19 (12) ◽  
pp. 2050226 ◽  
Author(s):  
G. Kalaimurugan ◽  
P. Vignesh ◽  
T. Tamizh Chelvam

Let [Formula: see text] be a finite commutative ring without identity. In this paper, we characterize all finite commutative rings without identity, whose zero-divisor graphs are unicyclic, claw-free and tree. Also, we obtain all finite commutative rings without identity and of cube-free order for which the corresponding zero-divisor graph is toroidal.


2018 ◽  
Vol 17 (07) ◽  
pp. 1850121
Author(s):  
K. Selvakumar ◽  
M. Subajini ◽  
M. J. Nikmehr

Let [Formula: see text] be a commutative ring with identity and let [Formula: see text] be the set of zero-divisors of [Formula: see text]. The essential graph of [Formula: see text] is defined as the graph [Formula: see text] with the vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] is an essential ideal. In this paper, we classify all finite commutative rings with identity for which the genus of [Formula: see text] is two.


2012 ◽  
Vol 55 (1) ◽  
pp. 127-137 ◽  
Author(s):  
John D. LaGrange

AbstractThe zero-divisor graph Γ(R) of a commutative ring R is the graph whose vertices consist of the nonzero zero-divisors of R such that distinct vertices x and y are adjacent if and only if xy = 0. In this paper, a characterization is provided for zero-divisor graphs of Boolean rings. Also, commutative rings R such that Γ(R) is isomorphic to the zero-divisor graph of a direct product of integral domains are classified, as well as those whose zero-divisor graphs are central vertex complete.


2007 ◽  
Vol 2007 ◽  
pp. 1-15 ◽  
Author(s):  
Ch. Eslahchi ◽  
A. M. Rahimi

The concept of the zero-divisor graph of a commutative ring has been studied by many authors, and thek-zero-divisor hypergraph of a commutative ring is a nice abstraction of this concept. Though some of the proofs in this paper are long and detailed, any reader familiar with zero-divisors will be able to read through the exposition and find many of the results quite interesting. LetRbe a commutative ring andkan integer strictly larger than2. Ak-uniform hypergraphHk(R)with the vertex setZ(R,k), the set of allk-zero-divisors inR, is associated toR, where eachk-subset ofZ(R,k)that satisfies thek-zero-divisor condition is an edge inHk(R). It is shown that ifRhas two prime idealsP1andP2with zero their only common point, thenHk(R)is a bipartite (2-colorable) hypergraph with partition setsP1−Z′andP2−Z′, whereZ′is the set of all zero divisors ofRwhich are notk-zero-divisors inR. IfRhas a nonzero nilpotent element, then a lower bound for the clique number ofH3(R)is found. Also, we have shown thatH3(R)is connected with diameter at most 4 wheneverx2≠0for all3-zero-divisorsxofR. Finally, it is shown that for any finite nonlocal ringR, the hypergraphH3(R)is complete if and only ifRis isomorphic toZ2×Z2×Z2.


Sign in / Sign up

Export Citation Format

Share Document