Sequence planning for stamping operations in progressive dies

2013 ◽  
Vol 26 (2) ◽  
pp. 347-357 ◽  
Author(s):  
M. J. Moghaddam ◽  
M. R. Soleymani ◽  
M. A. Farsi
Sadhana ◽  
2021 ◽  
Vol 46 (2) ◽  
Author(s):  
Gulivindala Anil Kumar ◽  
M V A Raju Bahubalendruni ◽  
V S S Prasad ◽  
K Sankaranarayanasamy

Author(s):  
KIAM TIAN SEOW ◽  
MICHEL PASQUIER

This paper proposes a new logical framework for vehicle route-sequence planning of passenger travel requests. Each request is a fetch-and-send service task associated with two request-locations, namely, a source and a destination. The proposed framework is developed using propositional linear time temporal logic of Manna and Pnueli. The novelty lies in the use of the formal language for both the specification and theorem-proving analysis of precedence constraints among the location visits that are inherent in route sequences. In the framework, legal route sequences—each of which visits every request location once and only once in the precedence order of fetch-and-send associated with every such request—is formalized and justified, forming a basis upon which the link between a basic precedence constraint and the corresponding canonical forbidden-state formula is formally established. Over a given base route plan, a simple procedure to generate a feasible subplan based on a specification of the forbidden-state canonical form is also given. An example demonstrates how temporal logic analysis and the proposed procedure can be applied to select a final (feasible) subplan based on additional precedence constraints.


2008 ◽  
Vol 575-578 ◽  
pp. 174-179
Author(s):  
Juan Hua Su ◽  
Feng Zhang Ren ◽  
Lei Wang

This paper analyzes the forming process methods of fin used in CPU chip to emit heat. The whole process is blanking, the first forging forming, the second forging (sizing), and trimming. The chamfer design of CPU fin blank is simulated by finite element analysis. The optimized chamfer 1.6 mm is available. Semi-enclosed cold forging of progressive dies is put forward. The newly designed transfer unit is applied, which unifies the merit of high efficiency of the progressive dies and the high material-using ratio of the project die. Quick disassembly structure is designed and pins are used as quick disassembly pins by means of ball bearing bushing. The unique processing of the shearing scrap structure is adopted when designing the inverted trimming dies. Compared with the traditional die, the mechanization and electrization are realized to increase the production efficiency and get highly precise CPU fin.


Sign in / Sign up

Export Citation Format

Share Document