cold forging
Recently Published Documents


TOTAL DOCUMENTS

752
(FIVE YEARS 121)

H-INDEX

29
(FIVE YEARS 3)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Aiman Yahaya ◽  
Syahrullail Samion

Purpose Cold forging operation is one of the widely used techniques in industry production. This paper aims to present a case study in highlighting and modelling the use of different type of palm oil-based [palm stearin (PS), palm kernel oil (PKO) and palm mid olein (PMO)] as a bio-lubricant in cold forging process using experimental and finite element method. Design/methodology/approach Ring compression test plays a fundamental role in the understanding of materials science and engineering because of the deformation, friction and wear behaviour. Aluminium (A6061) was used in this test to observe the deformation of the ring with different palm oil and its derivatives by comparing with commercial metal forming oil. Findings The presence of certain type of palm oil-based lubricant has a good performance compared to mineral-based oil in terms of surface roughness but when observed in terms of friction the result shows that palm oil-based lubricant has poor friction performance compared to mineral oil-based lubricant (m = 0.25), where PS has the lowest friction at m = 0.3 compared to PKO (m = 0.35) and PMO (m = 0.38). Research limitations/implications This research is using palm oil in cold forging test to study the friction, formation and stress at certain levels of stroke. The detail of the test is explained in the manuscript as attached. Social implications This research is trying to promote the use of biodegradable material to reduce pollution to the surrounding. Originality/value The originality of this paper has been checked using Turnitin and the result is 13%.


2022 ◽  
Author(s):  
Young Ho Seo

Abstract Cold forging dies are manufactured through the shrink fit process to withstand high pressure loads, but fatigue failure eventually occurs due to repeated compressive stresses. The life cycle until fatigue failure was defined as the limit life, and attempts were made to predict the die life based on finite element method (FEM). However, accurate prediction was impossible owing to uncontrollable environmental variables. Consequently, it is impossible to clearly determine the die replacement cycle, resulting in negative consequences such as poor quality, production delay, and cost increase. Various environmental factors affecting the prediction of die life cycle result in the increase or decrease of the forming load, which is an important variable that determines the die life cycle. In this study, a system for monitoring load data generated from forging facilities was developed based on a piezo sensor. In addition, the die life cycle was more accurately predicted by using the forming load data measured in real time, and a die life management system that can determine the die replacement cycle was applied to the automobile steering parts production line.


Author(s):  
Mohammad Ajwad Roslee ◽  
Ahmad Baharuddin Abdullah ◽  
Zuhailawati Hussain ◽  
Zarirah Karrim Wani
Keyword(s):  

Author(s):  
Grzegorz Samołyk ◽  
Grzegorz Winiarski

AbstractThis paper presents the results of a study investigating a cold forging process for producing hollow balls with different wall thicknesses. The study was performed by FEM numerical modelling, which made it possible to obtain a wide spectrum of results. For the analysis of FEM results obtained for problematic cases (shape defects in forged balls), novel hypotheses for results interpretation are proposed. The FEM numerical model and hypotheses are then verified via experimental testing, and selected theoretical results are compared with experimental findings. Finally, obtained results are discussed (e.g. the effect of billet dimensions on forging conditions, wall thickness and hole size), a method for FEM results interpretation is presented, and design-related solutions ensuring the production of defect-free hollow balls are proposed.


2021 ◽  
Vol 12 (1) ◽  
pp. 270
Author(s):  
Andreas Rohrmoser ◽  
Christoph Bode ◽  
Benjamin Schleich ◽  
Hinnerk Hagenah ◽  
Sandro Wartzack ◽  
...  

Gear pairs made of the material pairing metal-polymer provide advantages, such as a reduced weight, beneficial damping properties and the possibility to be operated in dry running conditions. However, the service life of the pairing is limited due to wear. The properties of the metallic gearing have a significant influence on the wear behavior of the material pairing. From previous investigations, the influence of the surface topography and the flank hardness of the metal pinion is known. With regard to resource saving and efficient manufacturing of the metal pinion, cold forging offers benefits. Through cold forging, metallic gears for the material pairing can be produced ready-to-use in a process suitable for serial production. In order to enable manufacturing by extrusion, the application of gear radii is necessary. The gear radii significantly affect the extrusion process and the achievable gear properties. However, the influence of gear radii on wear within the metal-polymer material pairing has not yet been investigated. Within this contribution, the influence of the gear radii on the contact behavior as well as the resulting local load and wear of the tooth flank is determined. For this purpose, wear tests with aluminum (AlMgSi1) and steel (16MnCr5) gears with different gear radii within the pairing with polyamide (PA66) gears were performed. It has been shown that the local wear of the tooth flank can be attributed to the local load and that adjusted gear radii lead to a varying load and wear of the metal and polymer gears. Based on the findings, functional relationships regarding the choice of gear radii and the wear behavior are derived which can be applied in the design of cold forged gears.


2021 ◽  
Vol 2130 (1) ◽  
pp. 012019
Author(s):  
G Winiarski ◽  
T Bulzak ◽  
Ł Wójcik ◽  
M Szala

Abstract This paper presents a numerical analysis of a new cold forming process for a hollow part with an external flange. The following techniques were used: forward extrusion, an unconventional method of extrusion with a moving sleeve, and upsetting in a tapered die cavity. The billet (42CrMo4 steel tube) was formed at ambient temperature. The study aimed to investigate the proposed method in terms of forged part accuracy. The following are examined and discussed: material flow, process force parameters in relation to tool strength, energy consumption of individual operations, as well as the distributions of strains, stresses, temperature and Cockcroft-Latham integrals in the produced part. The study has confirmed that hollow forged parts with external flanges of relatively large diameters and heights can be cold formed in several operations using different techniques.


Author(s):  
Grzegorz Rafał Dec

This paper presents and discusses the implementation of deep neural network for the purpose of failure prediction in the cold forging process. The implementation consists of an LSTM and a dense layer implemented on FPGA. The network was trained beforehand on Desktop Computer using Keras library for Python and the weights and the biases were embedded into the implementation. The implementation is executed using the DSP blocks, available via Vivado Design Suite, which are in compliance with the IEEE754 standard. The simulation of the network achieves 100% classification accuracy on the test data and high calculation speed.


Sign in / Sign up

Export Citation Format

Share Document