scholarly journals Natural Deduction for First-Order Hybrid Logic

2005 ◽  
Vol 14 (2) ◽  
pp. 173-198 ◽  
Author(s):  
Torben BraÜner
2007 ◽  
Vol 5 ◽  
Author(s):  
Tigran M. Galoyan

In this paper we discuss strong normalization for natural deduction in the →∀-fragment of first-order logic. The method of collapsing types is used to transfer the result (concerning strong normalization) from implicational logic to first-order logic. The result is improved by a complement, which states that the length of any reduction sequence of derivation term r in first-order logic is equal to the length of the corresponding reduction sequence of its collapse term rc in implicational logic.


1991 ◽  
Vol 56 (1) ◽  
pp. 129-149 ◽  
Author(s):  
Gunnar Stålmarck

In this paper we prove the strong normalization theorem for full first order classical N.D. (natural deduction)—full in the sense that all logical constants are taken as primitive. We also give a syntactic proof of the normal form theorem and (weak) normalization for the same system.The theorem has been stated several times, and some proofs appear in the literature. The first proof occurs in Statman [1], where full first order classical N.D. (with the elimination rules for ∨ and ∃ restricted to atomic conclusions) is embedded in a system for second order (propositional) intuitionistic N.D., for which a strong normalization theorem is proved using strongly impredicative methods.A proof of the normal form theorem and (weak) normalization theorem occurs in Seldin [1] as an extension of a proof of the same theorem for an N.D.-system for the intermediate logic called MH.The proof of the strong normalization theorem presented in this paper is obtained by proving that a certain kind of validity applies to all derivations in the system considered.The notion “validity” is adopted from Prawitz [2], where it is used to prove the strong normalization theorem for a restricted version of first order classical N.D., and is extended to cover the full system. Notions similar to “validity” have been used earlier by Tait (convertability), Girard (réducibilité) and Martin-Löf (computability).In Prawitz [2] the N.D. system is restricted in the sense that ∨ and ∃ are not treated as primitive logical constants, and hence the deductions can only be seen to be “natural” with respect to the other logical constants. To spell it out, the strong normalization theorem for the restricted version of first order classical N.D. together with the well-known results on the definability of the rules for ∨ and ∃ in the restricted system does not imply the normalization theorem for the full system.


2010 ◽  
Vol 3 (2) ◽  
pp. 279-286
Author(s):  
IAN HODKINSON

We show that the bounded fragment of first-order logic and the hybrid language with ‘downarrow’ and ‘at’ operators are equally expressive even with polyadic modalities, but that their ‘positive’ fragments are equally expressive only for unary modalities.


Author(s):  
Torben Braüner

This paper is about non-labelled proof-systems for hybrid logic, that is, proof-systems where arbitrary formulas can occur, not just satisfaction statements. We give an overview of such proof-systems, focusing on analytic systems: Natural deduction systems, Gentzen sequent systems and tableau systems. We point out major results and we discuss a couple of striking facts, in particular that non-labelled hybrid-logical natural deduction systems are analytic, but this is not proved in the usual way via step-by-step normalization of derivations.


2012 ◽  
Vol 7 ◽  
Author(s):  
Anders Søgaard ◽  
Søren Lind Kristiansen

Existing logic-based querying tools for dependency treebanks use first order logic or monadic second order logic. We introduce a very fast model checker based on hybrid logic with operators ↓, @ and A and show that it is much faster than an existing querying tool for dependency treebanks based on first order logic, and much faster than an existing general purpose hybrid logic model checker. The querying tool is made publicly available.


1996 ◽  
Vol 26 (1) ◽  
pp. 81-94 ◽  
Author(s):  
Andrzej Szalas

2005 ◽  
Vol 70 (1) ◽  
pp. 223-234 ◽  
Author(s):  
Balder ten Cate

AbstractSeveral extensions of the basic modal language are characterized in terms of interpolation. Our main results are of the following form: Language L′ is the least expressive extension of L with interpolation. For instance, let ℳ(D) be the extension of the basic modal language with a difference operator [7], First-order logic is the least expressive extension of ℳ(D) with interpolation. These characterizations are subsequently used to derive new results about hybrid logic, relation algebra and the guarded fragment.


Sign in / Sign up

Export Citation Format

Share Document