Computational study of micromechanical damage behavior in continuous fiber-reinforced ceramic composites

2016 ◽  
Vol 51 (18) ◽  
pp. 8610-8624 ◽  
Author(s):  
V. Bheemreddy ◽  
K. Chandrashekhara ◽  
L. R. Dharani ◽  
G. E. Hilmas
Author(s):  
Patrick Spriet ◽  
Georges Habarou

Over the last twenty years, significant performance improvements of turbojet engines have been achieved by optimizing engine thermodynamic cycle along with the introduction of new materials providing higher temperature capability and weight reduction. Metal Matrix Composites (MMC) and Ceramic Matrix Composites (CMC) are candidate material systems to meet the required thrust-to-weight ratio of 15 or higher. Continuous fiber reinforced ceramic composites, which have been developed by SEP for more than 15 years for thermostructural applications in oxidative environment, aim at increased operating temperature over superalloys and intermetallic alloys. This paper is a review of the main CMC component demonstrations performed by SEP over the last 10 years for turbojet engines along with an analysis of consequences on materials development and design methodology. The development status of a new thermostructural material specifically developed for turbojet environment with the prospect of higher design stress allowables and longer operating life at high temperature is presented.


2002 ◽  
Vol 124 (3) ◽  
pp. 465-470 ◽  
Author(s):  
J. A. DiCarlo ◽  
H. M. Yun

There exists today considerable interest in developing continuous fiber-reinforced ceramic matrix composites (CMC) that can operate as hot-section components in advanced gas turbine engines. The objective of this paper is to present simple analytical and empirical models for predicting the effects of time and temperature on CMC tensile rupture under various composite and engine conditions. These models are based on the average rupture behavior measured in air for oxide and SiC-based fibers of current technical interest. For example, assuming a cracked matrix and Larson-Miller rupture curves for single fibers, it is shown that model predictions agree quite well with high-temperature stress-rupture data for SiC/SiC CMC. Rupture models, yet to be validated, are also presented for three other relevant conditions: (a) SiC fibers become oxidatively bonded to each other in a cracked CMC, (b) applied CMC stresses are low enough to avoid matrix cracking, and (c) Si-based CMC are subjected to surface recession in high-temperature combustion gases. The practical implications of the modeling results are discussed, particularly in regard to the optimum fibers and matrices for CMC engine applications and the thermostructural capability of SiC/SiC CMC in comparison to nickel-based superalloys, monolithic ceramics, and oxide/oxide CMC.


Sign in / Sign up

Export Citation Format

Share Document