flexural properties
Recently Published Documents


TOTAL DOCUMENTS

1236
(FIVE YEARS 332)

H-INDEX

46
(FIVE YEARS 7)

2022 ◽  
Vol 281 ◽  
pp. 115036
Author(s):  
Changzhi Hu ◽  
Lin Sang ◽  
Kai Jiang ◽  
Jianing Xing ◽  
Wenbin Hou

2022 ◽  
Vol 318 ◽  
pp. 125985
Author(s):  
Messaouda Boumaaza ◽  
Ahmed Belaadi ◽  
Mostefa Bourchak ◽  
Mohammad Jawaid ◽  
Satha Hamid

2022 ◽  
pp. 002199832110386
Author(s):  
Hadi Azadmanesh ◽  
Seyed Amir Hossein Hashemi ◽  
Seyed Hooman Ghasemi

Nowadays, the application of the engineered cementitious composites(ECC) is expected to highly develop. Due to the lack of access to oiled- polyvinyl alcohol (PVA) fibers in many parts of the world, the implementation of the ECC has contained many difficulties. In this study, to increase the mechanical properties of ECC with the use of un-oiled PVA fibers, the polymers of styrene butadiene rubber (SBR), and ethylene vinyl acetate (EVA) were taken into account to resolve the abovementioned issue. Herein, also in order to enhance the tensile and flexural properties of ECC, the cement was replaced by polymers. Accordingly, a total of 7 mix designs were planned to conduct the proposed tests. The compressive strength, uniaxial tensile strength, and three-point bending tests were performed on the ECC at their 28-day age with consideration of the freeze and thaw cycle. The results of this research illustrated that the use of polymers can enhance the tensile and flexural properties of the ECC with un-oiled PVA fibers. The tensile strain in this study increased by more than 3% after the application of the polymers. Furthermore, the compressive strength increased by more than 47 MPa, and the deflection at the mid-span reached more than 9 mm in the bending test. However, the results showed that the use of polymers was effective on the freeze and thaw cycle and almost preserved the mechanical properties of the ECC. SBR latex has higher compatibility with the ECC in comparison with EVA powder.


2022 ◽  
Vol 30 (1) ◽  
pp. 397-412
Author(s):  
Bassam Hamid Alaseel ◽  
Mohamed Ansari Mohamed Nainar ◽  
Noor Afeefah Nordin ◽  
Zainudin Yahya ◽  
Mohd Nazim Abdul Rahim

This study investigates the effect of water absorption on the flexural strength of kenaf/ glass/unsaturated polyester (UPE) hybrid composite solid round rods used for insulating material applications. Three volume fractions of kenaf/glass fibre 20:80 (KGPE20), 30:70 (KGPE30), and 40:60 (KGPE40) with three different fibre arrangement profiles of kenaf fibres were fabricated by using the pultrusion technique and were aimed at studying the effect of kenaf fibres arrangement profile and its content in hybrid composites. The fibre/ resin volume fraction was maintained constant at 60:40. The dispersion morphologies of tested specimens were observed using the scanning electron microscope (SEM). The findings were compared with pure glass fibre-reinforced UPE (control) composite. The water absorption results showed a clear indication of how it influenced the flexural strength of the hybrid and non-hybrid composites. The least affected sample was observed in the 30KGPE composite type, wherein the kenaf fibre was concentrated at the centre of a cross-section of the composite rod. The water absorption reduced the flexural strength by 7%, 40%, 24%, and 38% of glass/UPE (control), 20KGPE, 30KGPE, and 40KGPE composites, respectively. In randomly distributed composite types, the water absorption is directly proportional to the volume fraction of kenaf fibre. At the same time, flexural properties were inversely proportional to the volume fraction of kenaf fibres. Although the influence of water absorption on flexural strength is low, the flexural strength of pultruded hybrid composites was more influenced by the arrangement of kenaf fibre in each composite type than its fibre loading.


2022 ◽  
Vol 170 ◽  
pp. 108527
Author(s):  
Tingyang Wu ◽  
Bing Zhang ◽  
Mudan Chen ◽  
Deng’an Cai ◽  
Guangming Zhou

Fibers ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Wiwat Pornwannachai ◽  
A. Richard Horrocks ◽  
Baljinder K. Kandola

Challenges faced by natural fibre-reinforced composites include poor compatibility between hydrophilic fibres such as flax and hydrophobic polymeric matrices such as polypropylene (PP) or poly(lactic acid) (PLA), and their inherent flammability. The former promotes weak interfacial adhesion between fibre and matrix, which may be further compromised by the addition of a flame retardant. This paper investigates the effect that the added flame retardant (FR), guanylurea methylphosphonate (GUP) and selected surface treatments of commingled flax and either PP or PLA fabrics have on the fibre/matrix interfacial cohesive forces in derived composites. Surface treatments included silanisation and atmospheric plasma flame exposure undertaken both individually and in sequence. 1-, 2- and 8-layered composite laminates were examined for their tensile, peeling and flexural properties, respectively, all of which yield measures of fibre-matrix cohesion. For FR-treated Flax/PP composites, maximum improvement was obtained with the combination of silane (using vinyltriethoxysilane) and plasma (150 W) treatments, with the highest peeling strength and flexural properties. However, for FR-treated Flax/PLA composites, maximum improvement in both properties occurred following 150 W plasma exposure only. The improvements in physical properties were matched by increased fibre-matrix adhesion as shown in SEM images of fractured laminates in which fibre-pullout had been eliminated.


Sign in / Sign up

Export Citation Format

Share Document