high temperature stress
Recently Published Documents


TOTAL DOCUMENTS

990
(FIVE YEARS 341)

H-INDEX

55
(FIVE YEARS 8)

HortScience ◽  
2022 ◽  
Vol 57 (2) ◽  
pp. 181-190
Author(s):  
Shih-wei Lin ◽  
Tsung-han Lin ◽  
Cynthia Kung Man Yee ◽  
Joyce Chen ◽  
Yen-wei Wang ◽  
...  

High temperature stress is a major limiting factor for pepper productivity, which will continue to be a problem under climate change scenarios. Developing heat tolerant cultivars is critical for sustained pepper production, especially in tropical and subtropical regions. In fruiting crops, like pepper, reproductive tissues, especially pollen, are the most sensitive to high temperature stress. Typically, pollen viability and germination are assessed through staining and microscopy, which is tedious and potentially inaccurate. To increase efficiency in assessing pollen traits of pepper, the use of impedance flow cytometry (IFC) has been proposed. We conducted three independent experiments to determine the most effective methodology to use IFC for evaluating pollen traits for heat tolerance in pepper. Seven floral developmental stages were evaluated, and stages 3, 4, and 5 were found to best combine high pollen concentration and activity. Flowers in development stages 3, 4, or 5 were then heat treated at 41, 44, 47, 50, and 55 °C or not heat treated (control). The critical temperature to assess heat tolerance using IFC was found to be 50 °C, with a reduction in pollen activity and concentration occurring at temperatures greater than 47 °C. Twenty-one entries of pepper were then accessed for pollen traits using the staining and IFC methods over 2 months, April (cooler) and June (hotter). Growing environment was found to be the greatest contributor to variability for nearly all pollen traits assessed, with performance during June nearly always being lower. PBC 507 and PBC 831 were identified as being new sources of heat tolerance, based on using IFC for assessing pollen. Pollen viability determined by staining and pollen activity determined using IFC were significantly positively correlated, indicating that IFC is an efficient and accurate method to assess pollen traits in pepper. This work provides a basis for further research in this area and supports more efficient breeding of heat-tolerant cultivars.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 72
Author(s):  
Marija Viljevac Vuletić ◽  
Ines Mihaljević ◽  
Vesna Tomaš ◽  
Daniela Horvat ◽  
Zvonimir Zdunić ◽  
...  

The aim of this study was to evaluate physiological responses to short-term heat stress in the leaves of traditional (Bistrica) and modern (Toptaste) plum cultivars. In this study, detached plum leaves were incubated at 25 °C (control) and 40 °C (stress). After 1 h of exposure to heat (40 °C), chlorophyll a fluorescence transients were measured, and several biochemical parameters were analyzed. Elevated temperature caused heat stress in both plum cultivars, seen as a decrease in water content (WT), but in the leaves of the cultivar Bistrica, an accumulation of proline and phenols, as well as an accumulation of photosynthetic pigments, suggest the activation of a significant response to unfavorable conditions. Conversely, in the leaves of Toptaste, a significant accumulation of malondialdehyde (MDA) and an activation of guaiacol peroxidase (GPOD), all together with a decreased soluble proteins content, indicate an inadequate response to maintaining homeostasis in the leaf metabolism. The impact of an elevated temperature on photosynthesis was significant in both plum cultivars as reflected in the decrease in performance indexes (PIABS and PItotal) and the maximum quantum yield of PSII (Fv/Fm), with significantly pronounced changes found in Toptaste. Unlike the traditional plum cultivar, Bistrica, in the modern cultivar, Toptaste, short-term heat stress increased the minimal fluorescence (F0) and absorption (ABS/RC), as well as Chl b in total chlorophylls. Additionally, the inactivation of RCs (RC/ABS) suggests that excitation energy was not trapped efficiently in the electron chain transport, which resulted in stronger dissipation (DI0/RC) and the formation of ROSs. Considering all presented results, it can be presumed that the traditional cultivar Bistrica has better tolerance to heat stress than the modern cultivar Toptaste. The cultivar, Bistrica, can be used as a basis in further plum breeding programs, as a source of tolerance for high temperature stress.


2022 ◽  
Vol 12 ◽  
Author(s):  
Muhammad Mubashar Zafar ◽  
Xue Jia ◽  
Amir Shakeel ◽  
Zareen Sarfraz ◽  
Abdul Manan ◽  
...  

The ever-changing global environment currently includes an increasing ambient temperature that can be a devastating stress for organisms. Plants, being sessile, are adversely affected by heat stress in their physiology, development, growth, and ultimately yield. Since little is known about the response of biochemical traits to high-temperature ambiance, we evaluated eight parental lines (five lines and three testers) and their 15 F1 hybrids under normal and high-temperature stress to assess the impact of these conditions over 2 consecutive years. The research was performed under a triplicate randomized complete block design including a split-plot arrangement. Data were recorded for agronomic, biochemical, and fiber quality traits. Mean values of agronomic traits were significantly reduced under heat stress conditions, while hydrogen peroxide, peroxidase, total soluble protein, superoxide dismutase, catalase (CAT), carotenoids, and fiber strength displayed higher mean values under heat stress conditions. Under both conditions, high genetic advance and high heritability were observed for seed cotton yield (SCY), CAT, micronaire value, plant height, and chlorophyll-a and b content, indicating that an additive type of gene action controls these traits under both the conditions. For more insights into variation, Pearson correlation analysis and principal component analysis (PCA) were performed. Significant positive associations were observed among agronomic, biochemical, and fiber quality-related traits. The multivariate analyses involving hierarchical clustering and PCA classified the 23 experimental genotypes into four groups under normal and high-temperature stress conditions. Under both conditions, the F1 hybrid genotype FB-SHAHEEN × JSQ WHITE GOLD followed by Ghuari-1, CCRI-24, Eagle-2 × FB-Falcon, Ghuari-1 × JSQ White Gold, and Eagle-2 exhibited better performance in response to high-temperature stress regarding the agronomic and fiber quality-related traits. The mentioned genotypes could be utilized in future cotton breeding programs to enhance heat tolerance and improve cotton yield and productivity through resistance to environmental stressors.


Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 74
Author(s):  
Jingrong Hu ◽  
Rudoviko Galileya Medison ◽  
Seng Zhang ◽  
Peifang Ma ◽  
Caihua Shi

Bradysia odoriphaga is an agricultural pest in China’s vegetable industry. In this study, pupae and adults were exposed to various non-lethal high-temperatures. The results demonstrated a decreased rate of eclosion once the pupae were exposed to temperatures exceeding 37 °C for 1 h. No effect on the lifespan of unmated female adults was observed after exposure to temperature stress, while unmated male adult lifespan decreased (>37 °C for 2 h). The size of the testis and ovaries for unmated male and female adults decreased, as did the fecundity and egg hatching rate for mated females. Compared with the control group (25 °C), the testis size of unmated male adults decreased after high-temperature stress followed by recovery at 25 °C for 1 h, though the size of the ovaries of female adults did not change. Additionally, the size of the testis and ovaries for unmated male and female adults decreased following high-temperature stress and 24 h of recovery at 25 °C. High temperatures affected males more than females; 37 °C is the critical temperature to control the population of B. odoriphaga. These results lay the foundation for the future development of environmentally friendly high-temperature prevention and pest-control strategies.


2022 ◽  
Vol 291 ◽  
pp. 110570
Author(s):  
Xiaoyu Yang ◽  
Yingyan Han ◽  
Jinghong Hao ◽  
Xiaoxiao Qin ◽  
Chaojie Liu ◽  
...  

2022 ◽  
pp. 173-187
Author(s):  
Abdul Rehman ◽  
Babar Shahzad ◽  
Fasih Ullah Haider ◽  
Muhammad Moeen-ud-din ◽  
Aman Ullah ◽  
...  

2021 ◽  
Vol 215 (12) ◽  
pp. 2-8
Author(s):  
N. Velizhanov

Abstract. The aim of the work is to separate from hybrid generations (F3-F4) the promising material of high-temperature stress resistance. Scientific novelty. Testing the growth of the germ root at 35, 38 and especially 43 °C is an effective method of differentiating tomato genotypes and identifying their resistance to heat. As a result of our studies of inter-grade and remote hybridization, tomato lines have been obtained, combining heat-resistantness with high productivity and valuable biochemical indicators of fruit quality. Methods. The material for research served 11 promising varieties and lines of tomato. Dedicated genetic sources of heat resistance were included in inter-grade crossings. The selection of genotypes for heat-resistantness in the field was carried out taking into account the complex of morphological and agrochemical features (type and strength of plant growth, bush foliage, phenology, shape and size of the fruit, general productivity of commodity fruits, the mass of the fetus). Results. It has been established that in varieties and lines of tomato, created as a result of inter-grade and interspecies interbreeding, heat-resistant sporophyte varied to large limits depending on the genotype and temperature level. The fruit's product ranged depending on the genotype and the year of cultivation (71.8–98.3 %). All forms turned out to be large-fruited – the weight of the fruit was from 87.8–124.6 g. L132, L204, L112 lines stood out as early forms. The dry matter content of all the genotypes studied is high, as it is above 5.0 %, except for the lines L122, L211 dry matter content of which was 4.74 and 4.58 %, respectively. Vitamin C was highest in L143 (63.32), L141 (62.65), L112 (63.38).


Sign in / Sign up

Export Citation Format

Share Document