thermodynamic cycle
Recently Published Documents


TOTAL DOCUMENTS

563
(FIVE YEARS 159)

H-INDEX

35
(FIVE YEARS 6)

Magnetism ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 10-30
Author(s):  
Nickolaus M. Bruno ◽  
Matthew R. Phillips

An analytical approach for computing the coefficient of refrigeration performance (CRP) was described for materials that exhibited a giant inverse magnetocaloric effect (MCE), and their governing thermodynamics were reviewed. The approach defines the magnetic work input using thermodynamic relationships rather than isothermal magnetization data discretized from the literature. The CRP was computed for only cyclically reversible temperature and entropy changes in materials that exhibited thermal hysteresis by placing a limit on their operating temperature in a thermodynamic cycle. The analytical CRP serves to link meaningful material properties in first-order MCE refrigerants to their potential work and efficiency and can be employed as a metric to compare the behaviors of dissimilar alloy compositions or for materials design. We found that an optimum in the CRP may exist that depends on the applied field level and Clausius–Clapeyron (CC) slope. Moreover, through a large literature review of NiMn-based materials, we note that NiMn(In/Sn) alloys offer the most promising materials properties for applications within the bounds of the developed framework.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 59
Author(s):  
Sebastian Lück ◽  
Tim Wittmann ◽  
Jan Göing ◽  
Christoph Bode ◽  
Jens Friedrichs

A mobile fuel cell systems power output can be increased by pressure amplification using an electric turbocharger. These devices are subject to frequent transient manoeuvres due to a multitude of load changes during the mission in automotive applications. In this paper, the authors describe a simulation approach for an electric turbocharger, considering the impact of moist air and condensation within the cathode gas supply system. Therefore, two simulation approaches are used: an iterative simulation method and one based on a set of ordinary differential equations. Additional information is included from turbine performance maps taking into account condensation using Euler–Lagrange CFD simulations, which are presented. The iterative calculation approach is well suited to show the impact of condensation and moist air on the steady state thermodynamic cycle and yields a significant shift of the steady state operating line towards the surge line. It is shown that a substantial risk of surge occurs during transient deceleration manoeuvres triggered by a load step.


2022 ◽  
pp. 1-19
Author(s):  
Diego Torre Ruiz ◽  
Guillermo Garcia-Valdecasas ◽  
Andoni Puenta ◽  
Daniel Hernandez ◽  
Salvador Luque

Abstract The multi-stage intermediate pressure turbine (IPT) is a key enabler of the thermodynamic cycle in geared turbofan engine architectures, where fan and turbine rotational speeds become decoupled by employing a power gearbox between them. This allows for the separate aerodynamic optimization of both components, an increase in engine bypass ratios, higher propulsive efficiency, and lower specific fuel consumption. Due to significant aerodynamic differences with conventional low pressure turbines (LPTs), multi-stage IPT designs present new aerodynamic, mechanical and acoustic trade-offs. This work describes the aerodynamic design and experimental validation of a fully featured three-stage IP turbine, including a final row of outlet guide vanes. Experiments have been conducted in a highly engine-representative transonic rotating wind tunnel at the CTA (Centro de Tecnolog'as Aeron'uticas, Spain), in which Mach and Reynolds numbers were matched to engine conditions. The design intent is shown to be fully validated. Efficiency levels are discussed in the context of a previous state-of-the-art LPT, tested in the same facility. It is argued that the efficiency gains of IPTs are due to higher pitch-to-chord ratios, which lead to a reduction in overall profile losses, and higher velocity ratios and lower turning angles, which reduce airfoil secondary flows and three-dimensional losses.


Trudy NAMI ◽  
2022 ◽  
pp. 41-52
Author(s):  
A. V. Kozlov ◽  
V. A. Fedorov ◽  
K. V. Milov

Introduction (problem statement and relevance). The object of research in this work is an inline six-cylinder gas engine 6ChN13/15 with a Miller thermodynamic cycle. On the basis of its computer model studies minimization of the specific effective fuel consumption has been reached due to variation study of gas distribution and air supply systems parameters.The purpose of the study was to investigate the parameters regulation effect of gas distribution and air supply systems on the performance of a 6ChN13/15 gas engine with a Miller cycle on the external speed characteristic basing on numerical modeling.Methodology and research methods. The research was carried out by the method of computer simulation. Numerical modeling was made on the basis of data obtained during a full-scale experiment of a 6ChN13/15 gas engine with Miller thermodynamic cycle.Scientific novelty and results. A comparative analysis of a gas engine optimization results has been carried out. The results obtained will be used to create a gas engine and its further optimization by controlling the working process and the air supply system.Practical significance. The results obtained may be of interest to truck car manufacturers and engine specialists.


Author(s):  
Alexey Tikhonov

Until recently, the high rates of aircraft engine engineering’s development were ensured by the technological solutions improvement and the desire to approximate as much as possible the ideal thermodynamic cycle of turbojet engines. The traditional fuel for turbojet engines is an aviation kerosene – Jet-A fuel group and their regional analogies. The traditional way of aircraft engines efficiency increasing is a raising of a temperature in front of the high-pressure turbine. New alloys and technologies allow to increase the aircraft engines efficiency to a certain level. Raising the temperature in the combustion chamber by 50 degrees increases the efficiency, which leads to a 5% reduction in fuel consumption. However, this approach is technology limited and does not provide innovative solutions. The aircraft engine engineering’s development tempo in the 21st century continues to accelerate. The main driver of such processes in recent years is the tightening of economic and environmental requirements. Many aircraft manufacturers are actively looking for ways to reach a new qualitative level in terms of turbojet engines economic efficiency and meeting strict environmental requirements. The paper considers the feasibility of using new cryogenic fuels in aircraft turbojet engines, and possible ways for aircraft industry successful development.


2021 ◽  
Vol 21 (4) ◽  
pp. 274-288
Author(s):  
Hailaa Jabbar Kareem ◽  
Ali A. F. Al-Hamadani ◽  
Ali Noaman Ibrahim

The Stirling engine is an external heat engine, which is considered as the best option for extracting work from concentrated solar power applications. The most prominent characteristics of the engine are low noise, vibration, and emissions besides reflexivity of usage with any kind of heat source such as solar, biomass, industrial heat, etc. In the present paper, the STE-1008 gamma-type Stirling engine had been analyzed by using an isothermal model to demonstrate the failure of the model in analyzing the STE-1008 considering it firstly as an engine and secondly as a cryocooler. The energy equation had been used to demonstrate the disability of the isothermal model in achieving a successful thermal analysis for engine performance. In addition, a MATLAB code had been developed to check the credibility of the isothermal model in the estimation of the engine thermal parameters. The findings of the isothermal analysis revealed that the heat exchangers are unnecessary. But, in reality; all the necessary heat transfer occur within the heat exchangers rather than in the working space boundaries. Therefore, that is invalid conclusion. However, Schmidt's theory is capable of capturing the essential engine features superbly. In particular, it is capable of capturing the fundamental interplay between the mechanically restricted movement of the engine components as well as the thermodynamic cycle which is obtained from this theory.


Abstract While water lifting plays a recognized role in the global atmospheric power budget, estimates for this role in tropical cyclones vary from no effect to a major reduction in storm intensity. To better assess this impact, here we consider the work output of an infinitely narrow thermodynamic cycle with two streamlines connecting the top of the boundary layer in the vicinity of maximum wind (without assuming gradient-wind balance) to an arbitrary level in the inviscid free troposphere. The reduction of a storm’s maximum wind speed due to water lifting is found to decline with increasing efficiency of the cycle and is about 5% for maximum observed Carnot efficiencies. In the steady-state cycle, there is an extra heat input associated with the warming of precipitating water. The corresponding positive extra work is of an opposite sign and several times smaller than that due to water lifting. We also estimate the gain of kinetic energy in the outflow region. Contrary to previous assessments, this term is found to be large when the outflow radius is small (comparable to the radius of maximum wind). Using our framework, we show that Emanuel’s maximum potential intensity (E-PI) corresponds to a cycle where total work equals work performed at the top of the boundary layer (net work in the free troposphere is zero). This constrains a dependence between the outflow temperature and heat input at the point of maximum wind, but does not constrain the radial pressure gradient. We outline the implications of the established patterns for assessing real storms.


2021 ◽  
Vol 34 (4) ◽  
pp. 596-604
Author(s):  
Michel de Peretti ◽  
Arne P. Olson ◽  
Emilio Panarella

The motivation of the present study is energy generation with thermonuclear fusion. Specifically, it is the attainment of breakeven conditions with a fusionable plasma whereby the output fusion energy is at least equal to the energy expended in creating the plasma and bringing it to fusionable conditions. This objective has eluded the physics community for the past seven decades. It is here suggested that perhaps the reason is that ever-bigger fusion machines are built, which unfortunately have brought results not in line with the expectations, in terms of desired fusion output. The opposite view is taken here, where attention is paid to the energy input, with the objective of minimizing the energy losses. One of the most important losses is a consequence of the limited thermodynamic efficiency of conventional engines that convert heat to work, thus generating the electricity involved in the energy input. This preliminary study shows that the efficiency can be improved if a novel thermodynamic cycle is used with heat recovery and recirculation. No attention is paid in the present study to the applicability of the novel cycle to a working engine but only to its feasibility. After the delineation of the concept, we use a simulation program to confirm that such approach is promising, and the objective of improving the thermodynamic efficiency of conventional heat-engines by at least 10% is realistic. Finally, the economic benefits are quantified of such substantial efficiency improvement on a world-wide scale. Mitigation of the damage to our environment due to the reduced heat rejection is also quantified.


Sign in / Sign up

Export Citation Format

Share Document