Structure–property correlation in a novel ZrB2–SiC ultrahigh-temperature ceramic composite with Al-alloy sinter additive

Author(s):  
P. Sengupta ◽  
S. Basu ◽  
I. Manna
2021 ◽  
pp. 130765
Author(s):  
Nipun P. Thekkeppat ◽  
Labhini Singla ◽  
Srinu Tothadi ◽  
Priyadip Das ◽  
Angshuman Roy Choudhury ◽  
...  

2021 ◽  
Vol 27 (19) ◽  
Author(s):  
Syed Meheboob Elahi ◽  
Mukul Raizada ◽  
Pradip Kumar Sahu ◽  
Sanjit Konar

2015 ◽  
Author(s):  
P. K. Nandi ◽  
K. Hatua ◽  
A. K. Bansh ◽  
N. Panja ◽  
T. K. Ghanty

Author(s):  
Frederik Scherff ◽  
Jessica Gola ◽  
Sebastian Scholl ◽  
Kinshuk Srivastava ◽  
Thorsten Staudt ◽  
...  

AbstractDual-phase steel shows a strong connection between its microstructure and its mechanical properties. This structure–property correlation is caused by the composition of the microstructure of a soft ferritic matrix with embedded hard martensite areas, leading to a simultaneous increase in strength and ductility. As a result, dual-phase steels are widely used especially for strength-relevant and energy-absorbing sheet metal structures. However, their use as heavy plate steel is also desirable. Therefore, a better understanding of the structure–property correlation is of great interest. Microstructure-based simulation is essential for a realistic simulation of the mechanical properties of dual-phase steel. This paper describes the entire process route of such a simulation, from the extraction of the microstructure by 3D tomography and the determination of the properties of the individual phases by nanoindentation, to the implementation of a simulation model and its validation by experiments. In addition to simulations based on real microstructures, simulations based on virtual microstructures are also of great importance. Thus, a model for the generation of virtual microstructures is presented, allowing for the same statistical properties as real microstructures. With the help of these structures and the aforementioned simulation model, it is then possible to predict the mechanical properties of a dual-phase steel, whose three-dimensional (3D) microstructure is not yet known with high accuracy. This will enable future investigations of new dual-phase steel microstructures within a virtual laboratory even before their production.


2009 ◽  
Vol 114 (6) ◽  
pp. 3360-3368 ◽  
Author(s):  
S. K. Manu ◽  
T. L. Varghese ◽  
S. Mathew ◽  
K. N. Ninan

2018 ◽  
Vol 140 (46) ◽  
pp. 15582-15585 ◽  
Author(s):  
Jinsong Chai ◽  
Sha Yang ◽  
Ying Lv ◽  
Tao Chen ◽  
Shuxin Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document