glycidyl azide polymer
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 26)

H-INDEX

18
(FIVE YEARS 3)

ACS Omega ◽  
2021 ◽  
Author(s):  
Yufang Song ◽  
Leqin Xiao ◽  
Xiaoxia Jian ◽  
Weiliang Zhou ◽  
Xu He

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2706
Author(s):  
Minghui Xu ◽  
Xianming Lu ◽  
Ning Liu ◽  
Qian Zhang ◽  
Hongchang Mo ◽  
...  

In order to enhance the application performance of glycidyl azide polymer (GAP) in solid propellant, an energetic copolyurethane binder, (poly[3,3-bis(2,2,2-trifluoro-ethoxymethyl)oxetane] glycol-block-glycidylazide polymer (PBFMO-b-GAP) was synthesized using poly[3,3-bis(2,2,2-trifluoro-ethoxymethyl)oxetane] glycol (PBFMO), which was prepared from cationic polymerization with GAP as the raw material and toluene diisocyanate (TDI) as the coupling agent via a prepolymer process. The molecular structure of copolyurethanes was confirmed by attenuated total reflectance-Fourier transform-infrared spectroscopy (ATR–FTIR), nuclear magnetic resonance spectrometry (NMR), and gel permeation chromatography (GPC). The impact sensitivity, mechanical performance, and thermal behavior of PBFMO-b-GAP were studied by drop weight test, X-ray photoelectron spectroscopic (XPS), tensile test, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA), respectively. The results demonstrated that the introduction of fluoropolymers could evidently reduce the sensitivity of GAP-based polyurethane and enhance its mechanical behavior (the tensile strength up to 5.75 MPa with a breaking elongation of 1660%). Besides, PBFMO-b-GAP exhibited excellent resistance to thermal decomposition up to 200 °C and good compatibility with Al and cyclotetramethylene tetranitramine (HMX). The thermal performance of the PBFMO-b-GAP/Al complex was investigated by a cook-off test, and the results indicated that the complex has specific reaction energy. Therefore, PBFMO-b-GAP may serve as a promising energetic binder for future propellant formulations.


2021 ◽  
Vol 158 ◽  
pp. 104796
Author(s):  
Taixin Liang ◽  
Chunzhi Li ◽  
Duo Pan ◽  
Gang Song ◽  
Xianmin Mai ◽  
...  

2021 ◽  
Author(s):  
Yaofang Hu ◽  
Gang Tang ◽  
Yunjun Luo ◽  
Shumeng Chi ◽  
Xiaoyu Li

Glycidyl azide polymer (GAP) is an important type of energetic polymer and considered to be the most promising candidate for the polymeric binders for next generation of solid propellants. However,...


2020 ◽  
Vol 40 (10) ◽  
pp. 797-805
Author(s):  
Fahimeh Ghoroghchian ◽  
Yadollah Bayat ◽  
Fatemeh Abrishami

AbstractGlycidyl azide polymer (GAP) is well known as an energetic prepolymer, but its application as a binder in propellants is limited due to its relatively high glass transition temperature and relatively poor mechanical properties. Copolymerization of GAP with polypropylene glycol (PPG) has been shown to improve GAPs properties because of the good thermal and mechanical properties of PPG. In this research we synthesized triblock copolymer of PPG-GAP-PPG and the compatibilities of this copolymer were investigated with energetic plasticizers (20% w/w) n-butyl nitroxyethylnitramine (BuNENA), trimethylolethane trinitrate (TMETN), and butanetriol trinitrate (BTTN) by solubility parameter, differential scanning calorimetry (DSC), rheological analysis, scanning electron microscopy (SEM) and vacuum stability test (VST). The DSC results showed that BuNENA had better compatibility with the triblock copolymer in comparison to TMETN and BTTN. It reduced the Tg of PPG-GAP-PPG from −58 to −63 °C. The rheological analysis was in good agreement with the DSC results obtained for the compatibility of the plasticizers. In the case of the addition of 20% w/w BuNENA, the viscosity of copolymer/plasticizer decreased from 550 to 128 mPa s, indicating appropriate compatibility of plasticizer with the copolymer. SEM images showed a better distribution of BuNENA in the copolymer matrix.


Sign in / Sign up

Export Citation Format

Share Document