Synthesis of Co-doped ZnO nanoparticles by sol–gel method and its characterization

2015 ◽  
Vol 26 (4) ◽  
pp. 2555-2562 ◽  
Author(s):  
J. El Ghoul ◽  
M. Kraini ◽  
L. El Mir
2019 ◽  
Vol 64 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Behnam Khanizadeh ◽  
Morteza Khosravi ◽  
Mohammad A. Behnajady ◽  
Ali Shamel ◽  
Behrouz Vahid

In this study, La and Mg doped, and co-doped ZnO nanoparticles were prepared using the sol-gel method. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), and N2 physisorption techniques. The XRD results indicated that the prepared nanoparticles can be well adopted by the hexagonal wurtzite structure crystal and there are no second impurity peaks. Studies of the FESEM, EDX and TEM have shown that the samples have uniform spherical-like morphology with a homogenous distribution. The incorporation of La and Mg into the ZnO lattice had no effect on the morphology of the nanoparticles, but a reduction in the size of the grains (≈ 14 nm to ≈ 7 nm) was observed due to the insertion of these ions. The results of N2 physisorption indicated that there was an increase in BET surface area and pore volume for doped and co-doped samples. The results of DRS showed an increase in band gap energy and a blue shift at the absorption edge for doped and co-doped samples. The photocatalytic activity of the prepared catalysts was evaluated in the removal of RhB under UVA irradiation. The results showed that Mg5%-La5%/ZnO had the highest photoactivity (91.18 %) among all samples.


2014 ◽  
Vol 72 (2) ◽  
pp. 301-309 ◽  
Author(s):  
Michele Karoline Lima ◽  
Daniela Martins Fernandes ◽  
Marcela Fernandes Silva ◽  
Mauro Luciano Baesso ◽  
Antonio Medina Neto ◽  
...  

2017 ◽  
Vol 17 ◽  
pp. 101-105 ◽  
Author(s):  
V. Porkalai ◽  
B. Sathya ◽  
Durairaj Benny Anburaj ◽  
G. Nedunchezhian ◽  
R. Meenambika

Zinc oxide has been receiving an enormous attention due to its potential applications in a variety of field such as optoelectronics, spintronics and sensors. Ag and In co-doped ZnO nanoparticles with different doping concentration 0.1M, 0.2M and 0.3M were prepared by sol-gel method via microwave irradiation followed by calcinations at 600°C for 2h. The structure and morphology were examined by X-ray diffraction (XRD), and Scanning Electron Microscope (SEM), respectively. Elemental composition has been estimated by Energy Dispersive X-ray Absorption (EDAX), while chemical properties are studied by Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) . The average particle size of the synthesized ZnO nanoparticles was calculated using the Scherrer formula and is found to be of less than 20 nm. Also the effect on the structure and the morphological properties of ZnO when co-doped with silver and Indium is examined. As the process is simple and low cost, it has the potential to be produced on a large scale.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Savka Janković ◽  
Dragana Milisavić ◽  
Tanja Okolić ◽  
Dijana Jelić

Zinc oxide is a highly applicable semiconductor material. Wide applica-tion of this nanomaterial is connected to wide spectrum of energy band gap, high bond en-ergy, great thermal conductivity, but also with its non-toxicity, antibacterial activity, bio-compatibility and biodegradability characteristics. The aim of this paper is synthesis and characterization of silver doped ZnO nanoparticles (ZnO:Ag NP) using sol-gel method. Ob-tained samples of silver doped ZnO nanoparticles were characterized by following tech-niques: Fourier-transform infrared spectroscopy (FTIR), UV/VIS spectrophotometry, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spec-troscopy (EDX). Efficiency of provided synthesis method was examined by FTIR spectros-copy. XRD determined the purity and crystallinity, and wurtzite structure of synthesized material. Surface morphology and the effect of doping were examined using SEM and EDX characterization methods. Results showed better conductivity after doping ZnO nanoparti-cles with silver. SEM micrographs showed ZnO:Ag NP in the form of nanorods with a par-ticle average size of 6 nm.


Sign in / Sign up

Export Citation Format

Share Document