characterization methods
Recently Published Documents


TOTAL DOCUMENTS

1425
(FIVE YEARS 569)

H-INDEX

49
(FIVE YEARS 15)

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Zaed M. Mazayen ◽  
Amira M. Ghoneim ◽  
Rasha S. Elbatanony ◽  
Emad B. Basalious ◽  
Ehab R. Bendas

Abstract Background Nanotechnology is considered a new and rapidly emerging area in the pharmaceutical and medicinal field. Nanoparticles, as drug delivery systems, impart several advantages concerning improved efficacy as well as reduced adverse drug reactions. Main body Different types of nanosystems have been fabricated including carbon nanotubes, paramagnetic nanoparticles, dendrimers, nanoemulsions, etc. Physicochemical properties of the starting materials and the selected method of preparation play a significant aspect in determining the shape and characteristics of the developed nanoparticles. Dispersion of preformed polymers, coacervation, polymerization, nano-spray drying and supercritical fluid technology are among the most extensively used techniques for the preparation of nanocarriers. Particle size, surface charge, surface hydrophobicity and drug release are the main factors affecting nanoparticles physical stability and biological performance of the incorporated drug. In clinical practice, many nanodrugs have been used for both diagnostic and therapeutic applications and are being investigated for various indications in clinical trials. Nanoparticles are used for the cure of kidney diseases, tuberculosis, skin conditions, Alzheimer’s disease, different types of cancer as well as preparation of COVID-19 vaccines. Conclusion In this review, we will confer the advantages, types, methods of preparation, characterization methods and some of the applications of nano-systems.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 499
Author(s):  
Xuyan Song ◽  
Yunlu He ◽  
Bo Wang ◽  
Sanwen Peng ◽  
Lin Tong ◽  
...  

The development of low platinum loading hydrogen evolution reaction (HER) catalysts with high activity and stability is of great significance to the practical application of hydrogen energy. This paper reports a simple method to synthesize a highly efficient HER catalyst through coating a highly dispersed PtNi alloy on porous nitrogen-doped carbon (MNC) derived from the zeolite imidazolate skeleton. The catalyst is characterized and analyzed by physical characterization methods, such as XRD, SEM, TEM, BET, XPS, and LSV, EIS, it, v-t, etc. The optimized sample exhibits an overpotential of only 26 mV at a current density of 10 mA cm−2, outperforming commercial 20 wt% Pt/C (33 mV). The synthesized catalyst shows a relatively fast HER kinetics as evidenced by the small Tafel slope of 21.5 mV dec−1 due to the small charge transfer resistance, the alloying effect between Pt and Ni, and the interaction between PtNi alloy and carrier.


Textiles ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 50-80
Author(s):  
Yusuke Yamada

Deciphering how the dielectric properties of textile materials are orchestrated by their internal components has far-reaching implications. For the development of textile-based electronics, which have gained ever-increasing attention for their uniquely combined features of electronics and traditional fabrics, both performance and form factor are critically dependent on the dielectric properties. The knowledge of the dielectric properties of textile materials is thus crucial in successful design and operation of textile-based electronics. While the dielectric properties of textile materials could be estimated to some extent from the compositional profiles, recent studies have identified various additional factors that have also substantial influence. From the viewpoint of materials characterization, such dependence of the dielectric properties of textile materials have given rise to a new possibility—information on various internal components could be, upon successful correlation, extracted by measuring the dielectric properties. In view of these considerable implications, this invited review paper summarizes various fundamental theories and principles related to the dielectric properties of textile materials. In order to provide an imperative basis for uncovering various factors that intricately influence the dielectric properties of textile materials, the foundations of the dielectrics and polarization mechanisms are first recapitulated, followed by an overview on the concept of homogenization and the dielectric mixture theory. The principal advantages, challenges and opportunities in the analytical approximations of the dielectric properties of textile materials are then discussed based on the findings from the recent literature, and finally a variety of characterization methods suitable for measuring the dielectric properties of textile materials are described. It is among the objectives of this paper to build a practical signpost for scientists and engineers in this rapidly evolving, cross-disciplinary field.


Author(s):  
Chunli Wu ◽  
Xiaohao Dong ◽  
Lan Wang ◽  
Lei Zhang ◽  
Xiaotong Liu

Abstract In order to improve the visible light catalytic activity of titanium dioxide (TiO2) and ensure its long-term stability on the surface of concrete, an N-TiO2/SiO2 composite was prepared using tetrabutyl titanate, nitric acid, and modified SiO2 nanospheres as the precursors by a solvothermal method. The effect of nitric acid on the phase composition, morphology and photoelectric properties of the synthesized photocatalytic composites was systematically studied by various characterization methods. The results show that the optimum nitric acid/butyl titanate volume ratio is 1/6. The nitrogen-doped TiO2 nanoparticles were uniformly dispersed on the surface of spherical SiO2 with a diameter of 200 nm. The degradation rate of simulated pollutants (RhB) with pH 5 and 7 exceeded 95% within 30 minutes and the catalytic effect remained excellent after five repetitions without much weakening. The excellent visible photocatalytic performance can be attributed to the doping of N replacing part of the oxygen atoms in TiO2, forming the energy level of N 2p at the O 2p energy level and reducing the TiO2 energy band gap to 2.99 eV. At the same time, the better dispersion of N-TiO2/SiO2 prepared by this new synthesis method also plays an important role in the improvement of visible light photocatalytic activity.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 119
Author(s):  
Farid Sayar Irani ◽  
Ali Hosseinpour Shafaghi ◽  
Melih Can Tasdelen ◽  
Tugce Delipinar ◽  
Ceyda Elcin Kaya ◽  
...  

High accuracy measurement of mechanical strain is critical and broadly practiced in several application areas including structural health monitoring, industrial process control, manufacturing, avionics and the automotive industry, to name a few. Strain sensors, otherwise known as strain gauges, are fueled by various nanomaterials, among which graphene has attracted great interest in recent years, due to its unique electro-mechanical characteristics. Graphene shows not only exceptional physical properties but also has remarkable mechanical properties, such as piezoresistivity, which makes it a perfect candidate for strain sensing applications. In the present review, we provide an in-depth overview of the latest studies focusing on graphene and its strain sensing mechanism along with various applications. We start by providing a description of the fundamental properties, synthesis techniques and characterization methods of graphene, and then build forward to the discussion of numerous types of graphene-based strain sensors with side-by-side tabular comparison in terms of figures-of-merit, including strain range and sensitivity, otherwise referred to as the gauge factor. We demonstrate the material synthesis, device fabrication and integration challenges for researchers to achieve both wide strain range and high sensitivity in graphene-based strain sensors. Last of all, several applications of graphene-based strain sensors for different purposes are described. All in all, the evolutionary process of graphene-based strain sensors in recent years, as well as the upcoming challenges and future directions for emerging studies are highlighted.


2022 ◽  
Vol 12 ◽  
Author(s):  
Alessandra Durazzo ◽  
Barbara C. Sorkin ◽  
Massimo Lucarini ◽  
Pavel A. Gusev ◽  
Adam J. Kuszak ◽  
...  

The increased utilization of metrology resources and expanded application of its’ approaches in the development of internationally agreed upon measurements can lay the basis for regulatory harmonization, support reproducible research, and advance scientific understanding, especially of dietary supplements and herbal medicines. Yet, metrology is often underappreciated and underutilized in dealing with the many challenges presented by these chemically complex preparations. This article discusses the utility of applying rigorous analytical techniques and adopting metrological principles more widely in studying dietary supplement products and ingredients, particularly medicinal plants and other botanicals. An assessment of current and emerging dietary supplement characterization methods is provided, including targeted and non-targeted techniques, as well as data analysis and evaluation approaches, with a focus on chemometrics, toxicity, dosage form performance, and data management. Quality assessment, statistical methods, and optimized methods for data management are also discussed. Case studies provide examples of applying metrological principles in thorough analytical characterization of supplement composition to clarify their health effects. A new frontier for metrology in dietary supplement science is described, including opportunities to improve methods for analysis and data management, development of relevant standards and good practices, and communication of these developments to researchers and analysts, as well as to regulatory and policy decision makers in the public and private sectors. The promotion of closer interactions between analytical, clinical, and pharmaceutical scientists who are involved in research and product development with metrologists who develop standards and methodological guidelines is critical to advance research on dietary supplement characterization and health effects.


Biomimetics ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 13
Author(s):  
Yuxiang Zhang ◽  
Hortense Le Ferrand

Bioinspired self-shaping is an approach used to transform flat materials into unusual three-dimensional (3D) shapes by tailoring the internal architecture of the flat material. Bioinspiration and bioinspired materials have a high potential for fostering sustainable development, yet are often fashioned out of expensive and synthetic materials. In this work, we use bioinspiration to endow clay with self-shaping properties upon drying. The composites created are based on clay and starch, and the internal architecture is built using celery fibers. The viscosity, shrinkage, and bending of the architected composite monolayers are studied for several compositions by measuring penetration depth and using optical characterization methods. Bilayer structures inspired from plants are then processed using a simple hand layup process to achieve bending, twisting, and combinations of those after drying. By layering a mixture of 32 vol% clay, 25.8 vol% starch, and 42.2 vol% water with 40 wt% embedded aligned celery fibers, it is possible to obtain the desired shape change. The work presented here aims at providing a simple method for teaching the concept of bioinspiration, and for creating new materials using only clay and plant-based ingredients. Rejuvenating clay with endowed self-shaping properties could further expand its use. Furthermore, the materials, methods, and principles presented here are affordable, simple, largely applicable, and could be used for sustainable development in the domain of education as well as materials and structures.


2022 ◽  
Author(s):  
Xiyu Deng ◽  
Xinya Kuang ◽  
Jiyang Zeng ◽  
Baoye Zi ◽  
Yiwen Ma ◽  
...  

Abstract Photocatalytic water splitting is considered to be a feasible method to replace traditional energy. However, most of the catalysts have unsatisfactory performance. In this work, we used a hydrothermal process to grow Ag nanoparticles in situ on g-C3N4 nanosheets, and then a high performance catalyst (Ag- g-C3N4) under visible light was obtained. The Ag nanoparticles obtained by this process are amorphous and exhibit excellent catalytic activity. At the same time, the local plasmon resonance effect of Ag can effectively enhance the absorption intensity of visible light by the catalyst. The hydrogen production rate promote to 1035 μmol g-1h-1 after loaded 0.6 wt% of Ag under the visible light, which was 313 times higher than that of pure g-C3N4 (3.3μmol g-1h-1). This hydrogen production rate is higher than most previously reported catalysts which loaded with Ag or Pt. The excellent activity of Ag- g-C3N4 is benefited from the Ag nanoparticles and special interaction in each other. Through various analysis and characterization methods, it is shown that the synergy between Ag and g-C3N4 can effectively promote the separation of carriers and the transfer of electrons. Our work proves that Ag- g-C3N4 is a promising catalyst to make full use of solar energy.


Author(s):  
Herinjaka Haga Ratsimbazafy ◽  
Aurélie Laborel-Préneron ◽  
Camille Magniont ◽  
Philippe Evon

The valorization of available agricultural by-products is important for the development of bio-aggregate based concretes as eco-friendly solutions for building materials. However, their diversity requires to assess their potential of use in vegetal concretes. This study aims to propose simple and relevant multi-physical characterization methods for plant aggregates. Basic and complementary characterizations were carried out on hemp shiv as a reference plant aggregate, and nine by-products available in the South-West part of France, i.e., oleaginous flax shiv, sunflower pith and bark, coriander straw, wheat straw, wheat chaff, corn shuck, miscanthus stem and vine shoot. The basic characterizations performed were those recommended by the TC-RILEM 236 BBM, i.e., particle size distribution, bulk density, water absorption and thermal conductivity. Complementary characterizations have also been proposed, taking into account the possible environment of the binder and the vegetal concrete manufacturing method. The additional tests developed or adapted from previous research assess the following properties: the content of water-soluble compounds at pH 7 and 12, the dry density of plant aggregates compacted in wet state, the real water absorption after compaction and the compression behavior of these compacted aggregates. This complete characterization highlights the distinct behavior of the different agroresources and allows to correlate these characteristics to the use properties of hardened composites.


2022 ◽  
Author(s):  
Cristina Chircov ◽  
Bogdan Stefan Vasile

Recent years have witnessed an extensive application of iron oxide nanoparticles within a wide variety of fields, including drug delivery, hyperthermia, biosensing, theranostics, and cell and molecular separation. Consequently, synthesis and characterization methods have continuously evolved to provide the possibility for controlling the physico-chemical and biological properties of the nanoparticles to better suit the envisaged applications. In this manner, this chapter aims to provide an extensive overview of the most recent progress made within the processes of iron oxide nanoparticle synthesis and characterization. Thus, the chapter will focus on novel and advanced approaches reported in the literature for obtaining standardized nanoparticles with controllable properties and effects. Specifically, it will emphasize the most recent progress made within the microwave-assisted, microfluidics, and green synthesis methods, as they have shown higher capacities of controlling the outcome nanoparticle properties.


Sign in / Sign up

Export Citation Format

Share Document