Modification of resin modified glass ionomer cement by addition of bioactive glass nanoparticles

Author(s):  
Alireza Valanezhad ◽  
Tetsuro Odatsu ◽  
Koichi Udoh ◽  
Takanobu Shiraishi ◽  
Takashi Sawase ◽  
...  
2020 ◽  
Author(s):  
Ika Dewi Ana

AbstractHybridization of resin modified- glass ionomer cement (RMGIC) and bioactive glass (BAG) may result higher mechanical strength and resistance to disintegration, while less contain of polyacrylic acid would lead to bioactivity of the cement. In the present study we investigated the effect of BAG from the CaSiO3-Ca3(PO4)2 system addition to the bioactivity of RMGIC. The BAG containing 10, 15, and 20% of P2O5 (denoted as CSP10, 15, and 20) were used in the study to modify the powder of RMGIC, with apatite wollastonite (AWG) was chosen for a comparison. The surface bioactivity was assessed using XRD, FT-IR, and SEM analysis after specimen immersion in the simulated body fluid (SBF). Measurement of Ca, P, F, Sr, and Al was conducted for the remaining SBF. Cells studies were done to evaluate cell attachment, proliferation, and differentiation on the RMGIC containing BAG compared to the one without BAG. Results of Sr and Al analysis lead to the conclusion that addition of BAG may not influence stability of the matrix of the cement. It was also confirmed that addition of bioactive glass was positive factor indicating excellent ions exchange in SBF and spontaneous growth of apatite by consuming the Ca and P ions in the surrounding fluid. The ability of osteoblasts differentiation on the four types of bioactive cements were higher than that of RMGIC without BAG. These results might provide novel insights into the development of a new generation of osteoconductive biomedical materials.


2019 ◽  
pp. 61-67
Author(s):  
Xuan Anh Ngoc Ho ◽  
Anh Chi Phan ◽  
Toai Nguyen

Background: Class II restoration with zirconia inlay is concerned by numerous studies about the luting coupling between zirconia inlay and teeth. The present study was performed to evaluate the microleakage of Class II zirconia inlayusing two different luting agents and compare to direct restoration using bulk fill composite. Aims: To evaluate the microleakage of Class II restorations using three different techniques. Materials and methods: The study was performed in laboratory with three groups. Each of thirty extracted human teeth was prepared a class II cavity with the same dimensions, then these teeth were randomly divided into 3 groups restored by 3 different approaches. Group 1: zirconia inlay cemented with self-etch resin cement (Multilink N); Group 2: zirconia inlay cemented with resin-modified glass ionomer cement (Fuji Plus); Group 3: direct composite restoration using bulk fill composite(Tetric N-Ceram Bulk Fill). All restorations were subjected to thermal cycling (100 cycles 50C – 55 0C), then immersed to 2% methylene blue solution for 24 hours. The microleakage determined by the extent of dye penetration along the gingival wall was assessed using two methods: quantitative and semi-quantitative method. Results: Among three types of restorations, group 1 demonstrated the significantly lower rate of leakage compared to the others, while group 2 and 3 showed no significant difference. Conclusion: Zirconia inlay restoration cemented with self-etch resin cement has least microleakage degree when compare to class II zirconia inlay restoration cemented with resin-modified glass ionomer cement and direct composite restoration using bulk fill composite. Key words: inlay, zirconia ceramic, class II restoration, microleakage.


2020 ◽  
Vol 8 (02) ◽  
pp. 49-54
Author(s):  
Salil Mehra ◽  
Ashu K. Gupta ◽  
Bhanu Pratap Singh ◽  
Mandeep Kaur ◽  
Ashwath Kumar

Abstract Introduction The aim of the current study was to evaluate shear bond strength of resin composite bonded to Theracal LC, Biodentine, and resin-modified glass ionomer cement (RMGIC) using universal adhesive and mode of fracture. Materials and Methods A total of 50 caries-free maxillary and mandibular molars extracted were taken; occlusal cavities were prepared, mounted in acrylic blocks, and divided into five groups based on the liner used. Group 1: Biodentine liner placed into the cavity and bonding agent and resin composite applied after 12 minutes. Group 2: Biodentine liner placed into the cavity and bonding agent and resin composite applied after 14 days. Group 3: RMGIC liner placed into the cavity and bonding agent and resin composite applied immediately. Group 4: RMGIC liner placed into the cavity and bonding agent and resin composite applied after 7 days. Group 5: Theracal LC liner placed into the cavity and bonding agent and resin composite applied immediately. Each sample was bonded to resin composite using universal adhesive. Shear bond strength analysis was performed at a cross-head speed of 0.1 mm/min. Statistical Analysis  Statistical analysis was performed with one-way analysis of variance and posthoc Bonferroni test using SPSS version 22.0. Results and Conclusion Biodentine liner when bonded immediately to resin composite showed minimum shear bond strength. RMGIC when bonded to resin composite after 7 days showed maximum shear bond strength. Mode of fracture was predominantly cohesive in groups having Biodentine and Theracal LC as liner.


2003 ◽  
Vol 19 (8) ◽  
pp. 739-746 ◽  
Author(s):  
Carlos Alberto de Souza Costa ◽  
Elisa Maria Aparecida Giro ◽  
Alexandre Batista Lopes do Nascimento ◽  
Hilcia Mezzalira Teixeira ◽  
Josimeri Hebling

Sign in / Sign up

Export Citation Format

Share Document