Remarks on the Existence Results for Second-Order Differential Inclusions with Nonlocal Conditions

2009 ◽  
Vol 15 (1) ◽  
pp. 27-43 ◽  
Author(s):  
Mohamed Bahaj
2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Hernán R. Henríquez ◽  
Marcos Rabelo ◽  
Luciana Vale

In this work we establish some existence results for abstract second order Cauchy problems modeled by a retarded differential inclusion involving nonlocal and impulsive conditions. Our results are obtained by using fixed point theory for the measure of noncompactness.


2011 ◽  
Vol 09 (02) ◽  
pp. 201-223 ◽  
Author(s):  
DANIEL PAŞCA

Some existence results are obtained for periodic solutions of nonautonomous second-order differential inclusions systems with (q, p)-Laplacian.


2017 ◽  
Vol 24 (3) ◽  
pp. 313-323 ◽  
Author(s):  
Mouffak Benchohra ◽  
Juan J. Nieto ◽  
Abdelghani Ouahab

AbstractIn this paper, we establish several results about the existence of second-order impulsive differential inclusion with periodic conditions. By using critical point theory, several new existence results are obtained. We also provide an example in order to illustrate the main abstract results of this paper.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Meili Li ◽  
Chunhai Kou

The existence of mild solutions for second-order impulsive semilinear neutral functional differential equations with nonlocal conditions in Banach spaces is investigated. The results are obtained by using fractional power of operators and Sadovskii's fixed point theorem.


2012 ◽  
Vol 2012 ◽  
pp. 1-24
Author(s):  
Liang Zhang ◽  
Peng Zhang

The existence of periodic solutions for nonautonomous second-order differential inclusion systems with -Laplacian is considered. We get some existence results of periodic solutions for system, a.e. , , by using nonsmooth critical point theory. Our results generalize and improve some theorems in the literature.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Lizhen Chen ◽  
Gang Li

In this article, we prove the existence of solutions for the generalized Bagley-Torvik type fractional order differential inclusions with nonlocal conditions. It allows applying the noncompactness measure of Hausdorff, fractional calculus theory, and the nonlinear alternative for Kakutani maps fixed point theorem to obtain the existence results under the assumptions that the nonlocal item is compact continuous and Lipschitz continuous and multifunction is compact and Lipschitz, respectively. Our results extend the existence theorems for the classical Bagley-Torvik inclusion and some related models.


Sign in / Sign up

Export Citation Format

Share Document