The Topological Entropy of Stable Sets for Bi-orderable Amenable Groups

Author(s):  
Jie Li ◽  
Tao Yu
2019 ◽  
Vol 2019 (747) ◽  
pp. 277-298 ◽  
Author(s):  
Tomasz Downarowicz ◽  
Dawid Huczek ◽  
Guohua Zhang

Abstract We prove that for any infinite countable amenable group G, any {\varepsilon>0} and any finite subset {K\subset G} , there exists a tiling (partition of G into finite “tiles” using only finitely many “shapes”), where all the tiles are {(K,\varepsilon)} -invariant. Moreover, our tiling has topological entropy zero (i.e., subexponential complexity of patterns). As an application, we construct a free action of G (in the sense that the mappings, associated to elements of G other than the unit, have no fixed points) on a zero-dimensional space, such that the topological entropy of this action is zero.


2015 ◽  
Vol 36 (8) ◽  
pp. 2482-2497 ◽  
Author(s):  
WEN HUANG ◽  
LEI JIN

It is proved that positive entropy implies mean Li–Yorke chaos for a $G$-system, where $G$ is a countable, infinite, discrete, bi-orderable amenable group. Examples are given for the cases of integer lattice groups and groups of integer unipotent upper triangular matrices.


Author(s):  
Bingya Zhao ◽  
Ya Zhang

This paper studies the distributed secure estimation problem of sensor networks (SNs) in the presence of eavesdroppers. In an SN, sensors communicate with each other through digital communication channels, and the eavesdropper overhears the messages transmitted by the sensors over fading wiretap channels. The increasing transmission rate plays a positive role in the detectability of the network while playing a negative role in the secrecy. Two types of SNs under two cooperative filtering algorithms are considered. For networks with collectively observable nodes and the Kalman filtering algorithm, by studying the topological entropy of sensing measurements, a sufficient condition of distributed detectability and secrecy, under which there exists a code–decode strategy such that the sensors’ estimation errors are bounded while the eavesdropper’s error grows unbounded, is given. For collectively observable SNs under the consensus Kalman filtering algorithm, by studying the topological entropy of the sensors’ covariance matrices, a necessary condition of distributed detectability and secrecy is provided. A simulation example is given to illustrate the results.


2021 ◽  
pp. 1-36
Author(s):  
ARIE LEVIT ◽  
ALEXANDER LUBOTZKY

Abstract We prove that all invariant random subgroups of the lamplighter group L are co-sofic. It follows that L is permutation stable, providing an example of an infinitely presented such group. Our proof applies more generally to all permutational wreath products of finitely generated abelian groups. We rely on the pointwise ergodic theorem for amenable groups.


2019 ◽  
Vol 7 (1) ◽  
pp. 29-37
Author(s):  
Jose S. Cánovas

AbstractIn this paper we review and explore the notion of topological entropy for continuous maps defined on non compact topological spaces which need not be metrizable. We survey the different notions, analyze their relationship and study their properties. Some questions remain open along the paper.


Sign in / Sign up

Export Citation Format

Share Document